Antimicrobial photodynamic therapy and its applicability in aquaculture systems and aquatic animal health management: An overview
Article Main
Abstract
Global aquaculture production in 2012 touched new high of 90.4 million tonnes including 66.6 million tonnes of food fish and 23.8 million tonnes of aquatic algae providing 19.2 kg per capita food fish suppy. Aquaculture is reported to suffer heavy production and financial losses due to fish infections caused by microbial pathogens. Therefore in order to make aquaculture industry more sustainable, effective strategies to control fish infections are urgently needed. Antimicrobial Photodynamic Therapy (aPDT) is an emerging, low-cost anti-microbial approach to the treatment of locally occurring infections and also for the treatment of aquaculture water and waste waters. Already proven effective in various medical and clinical applications, it utilizes three vital components: a photosensitizing agent (PS), a light source of an appropriate wave length and oxygen. aPDT has got a potential of being a preferred choice over antibiotics in aquaculture systems because of its non-target specificity, few side effects, lack of the pathogenicity reversal and re-growth of the micro-organism after treatment and the lack of development of resistance mechanisms. The technique has been proved effective in vitro against bacteria (including drug-resistant strains), yeasts, fungi, viruses, parasites and even the stubborn biofilms. Although preliminary results indicate that this technology has a high potential to disinfect waters in aquaculture system and also in hatcheries and seed production units, but it clearly needs more deep knowledge and multi-dimenstional approach.
Article Details
Article Details
Antibiotic resistance, Antimicrobial photodynamic therapy, Fish farming, Photosensitizer
Agarwal, M.L., Clay, M.E., Harvey, E.J., Evans, H.H., Antunez, A.R., Oleinick, N.L. (1991). Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 51 : 5993–6.
Akilov, O.E., Kosaka, S., O’Riordan, K., and Hasan, T. (2007). Photodynamic therapy for cutaneous leishmaniasis: the effectiveness of topical phenothiaziniums in parasite eradication and Th1 immune response stimulation. Exp. Dermatol. 16 : 651.
Alexandra, B. Ormond and Harold, S. Freeman. (2013). Dye Sensitizers for Photodynamic Therapy. Materials. 6 : 817-840.
Alouini, Z. and Jemli, M. (2001). Destruction of helminth eggs by photosensitized porphyrin. Journal of Environmental Monitoring. 3: 548-551.
Al-Rawahi, G.N.; Reynolds, S.; Porter, S.D.; Forrester, L.; Kishi, L.; Chong, T.; Bowie, W.R.; Doyle, P.W. (2008). Community-associated CMRSA-10 (USA-300) is the predominant strain among methicillin- resistant Staphylococcus aureus strains causing skin and soft tissue infections in patients presenting to the emergency department of a canadian tertiary care hospital. J. Emerg. Med.
Alves, E., Carvalho, C.M.B., Tome, J.P.C., Faustino, M.A.F., Neves, M., Tome, A.C., Cavaleiro, J.A.S., Cunha, Mendo A. S. (2008). Adelaide, Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. J. Ind. Microbiol. Biotechnol. 35 : 1447-1454.
Alves, E., Costa, L., Carvalho, C. Faustino, M.A.F., Neves, M.G.P.M.S., Tome, A.C., Cavaleiro, J.A.S., Cunha, A. and Almeida, A. (2009). Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol. 9 : 216- 221.
Alves, E., Maria, F., A. F., Tome, Joa˜o P. C., Maria, Neves, G..M.S., Augusto, C., Tome ., Cavaleiro, Jose, A. S., Cunha, A., Newton, G. C., Adelaide, A. (2011). Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri. PLoS ONE. 6(6): 20970.
Arrojado, C., Pereira,C., Jo˜ao P. C., Maria,T., Faustino, A.F., Maria, Neves, G.P.M.S., Augusto, C. Tome´., Jose,´ A. S., Cavaleiro, Cunha, A., Calado, R., Gomes, N. and Almeida, A. (2011). Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochem. Photobiol. Sci. 10 :1691-1700.
Ashok, A., Arshad, E., Jasmin, C., Somnath,S. P., Bright Singh, I.S.,Mohandas, A. and Anas, A. (2012). Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microbial Biotechnology. 5(1): 59–68.
Baker, K.S. and Smith, R.C.(1982). The role of solar radiation in marine ecosystems, ed. J. Calkins, Plenum Press, New York, p. 233.
Ben-Hur, E., Hoeben, R.C., Van Ormondt, H., Dubbelman, T.M. and Van Steveninck, J. (1992). Photodynamic inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride. Journal of Photochemistry and Photobiology B: Biology. 13 : 145-152.
Benov, L. (2014). Photodynamic therapy: current status and future directions. Med Princ Pract. 14 : 1011–7571.
Bertoloni, G., Zambotto, F. L. Conventi, Reddi, E. and Jori, G. (1987). Role of specific cellular targets in the hematoporphyrin-sensitized photoinactivation of microbial- cells, Photochem. Photobiol. 46: 695.
Bezman, S.A., Burtis, P.A., Izod, T.P., Thayer, M.A. (1978). Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads. Photochem. Photobiol. 28 : 325–329.
Bonnett, R. (2000). Chemical aspects of photodynamic therapy, Gordon and Breach Science Publishers, Amsterdam.
Bonnett, R., Krysteva, M.A., Lalov, I.G. and Artarsky, S.V. (2006). Water disinfection using photosensitizers immobilized on chitosan. Water Res. 40 : 1269.
Capella, M.A. and Capella, L.S. (2003). A light in multidrug resistance: photodynamic treatment of multidrugresistant tumors. Journal of Biomedical Science. 10(4): 361–366.
Carre ,V., Gaud, O., Sylvain, I., Bourdon, O., Spiro, M., Blais, J., Granet, R., Krausz, P. and Guilloton,M. (1999). Fungicidal proper t ies of mesoarylglycosylporphyrins: Influence of sugar substituents on photoinduced damage in the yeast Saccharomyces cerevisiae. J. Photochem. Photobiol. 48 : 57.
Carvalho, C.M.B., J.P.C. Tome´, M.A.F. Faustino, M.G.P.M.S. Neves, A.C. Tome´ , J.A.S. Costa, Costa, Cavaleiro, L., Alves, E. A., Oliveira, A ., Cunha and Almeida, A. (2009). Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection, J. Porphyrins Phthalocyanines. 13 : 574.
Casteel, M.J., Jayaraj, K., Gold, A., Ball, L.M., Sobsey, M.D.(2004). Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem. Photobiol. 80 : 294-300.
Chen-Collins, A., Dixon, D., Vzorov, A., Marzilli, L., and Compans, R. (2003). Prevention of poxvirus infection by tetrapyrroles. BMC Infect. Dis. 3: 9.
Cheng, Y., Samia, A.C., Meyers, J.D.P., Panagopoulos, I., Fei, B., Burda, C. (2008). Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 130: 10643–7.
Christensen, T., Volden, G., Moan, J., Sandquist, T. (1982). Release of lysosomal enzymes and lactate dehydrogenase due to hematoporphyrin derivative and light irradiation of NHIK 3025 cells in vitro. Ann Clin Res. 14 : 46–52.
Costa, L., Alves, E., Carvalho, C.M.B., Tome, J.P.C., Faustino, M.A.F., Neves, M.G.P.M.S., Tome , A.C., Cavaleiro, J.A.S. Cunha, A. and Almeida, A. (2008). Sewage bacter-iophage photoinactivation by cationic porphyrins: a study of charge effect. Photochem. Photobiol. Sci., 7: 415.
Davies, C.L., Western, A., Lindmo, T., Moan, J. (1986). Changes in antigens expression on human FME melanoma cells after exposure to photoactivated hematoporphyrin derivatives. Cancer Res., 46 : 6068–72.
De Rosa, M.C.; Crutchley, R.J. (2002). Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233 : 351-371.
Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W. and Bossier, P., (2007). Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example, Trends Biotechnol. 25: 472–479.
Demidova,T.N., Hamblin, M.R. (2005). Effect of cellphotosensitizer binding and cell density on microbial photoinactivation. Antimicrobial Agents and Chemotherapy. 49 : 2329-2335.
Dobson, J.; Wilson, M. (1992). Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch. Oral. Biol. 37(11): 883-887.
Donnelly, R.F., Mccarron, P.A. and Tunney, M.M. (2008). Antifungal photodynamic Therapy. Microbiol. Res. 163 : 1.
Donnelly, R.F., McCarron, P.A., Lightowler, J.M. and Woolfson, A.D. (2005). Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J. Controlled Release. 103 : 381.
Durantini, E.N. (2006). Photodynamic inactivation of bacteria, Curr. Bioact. Compd. 2: 127.
Egyeki, A., Turoczy, G., Majer, Z., Toth, K., Fekete, A., Maillard, P. and Csik, G. (2003). Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action. Biochim. Biophys. Acta. 16(24) : 115.
Friedberg, J.S., Skema, C., Baum, E.D., Burdick, J., Vinogradov, S.A., Wilson, D.F., Horan, A.D. and Nachamkin, I. (2001). In vitro effects of photodynamic therapy on Aspergillus fumigates. J. Antimicrob. Chemother. 48 : 105.
Ganz, R., Viveiros, J., Ahmad, A., Ahmadi, A., Khalil, A., Tolkoff, M., Nishioka, N. and Hamblin, M. (2005). Helicobacter pylori in patients can be killed by visible light. Lasers Surg. Med. 36 : 260-268.
Gibson, S.L., Murant, R.S., Hilf, R. (1988). Photosensitizing effects of hematoporphyrin derivative and Photofrin II on the plasma membrane enzymes 58-nucleotidase, Na+ K+-ATPase, and Mg2+-ATPase in R3230AC rat mammary adenocarcinomas. Cancer Res. 48 : 3360–6.
Gonzales, F.P., Da Silva, S.H., Roberts, D.W. and Braga, G.U. (2010). Photodynamic inactivation of conidia of the fungi Metarhizium anisopliae and Aspergillus nidulans with methylene blue and toluidine blue. Photochem. Photobiol. 86 : 653.
Hamblin, M.R. and Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease. Photochem. Photobiol. Sci. 3 : 436-450.
Hone, D.C., Walker, P.I., Evans-Gowing, R., FitzGerald, S., Beeby, A., Chambrier, I. (2002). Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir. 18: 2985–7.
Horowitz, B., Williams, B., Rywkin, S., Prince, A.M., Pascual, D., Geacintov, N., Valinsky, J. (1991). Inactivation of viruses in blood with aluminium phthalocyanine derivatives. Transfusion. 31: 102-108.
Jemli, M. Alouini, Z. Sabbahi, S. and Gueddari, M. (2002). Destruction of fecal bacteria in wastewater by three photosensitizers. J. Environ. Monit. 4 : 511.
Joshi, P.G., Joshi, K., Mishra, S., Joshi, N.B. (1994). Ca2+ influx induced by photodynamic action in human cerebral glioma (U-87 MG) cells: possible involvement of a calcium channel. Photochem Photobiol. 60 : 244–248.
Jui-Teng, Lin. (2014). Analysis on the efficacy of photodynamic antimicrobial chemotherapy in aquaculture systems. International Journal of Latest Research in Science and Technology. 3(4): 37-39.
Kassab, K., Amor,T., Jori, G., and Coppellotti, O. (2002). Photosensitization of Colpoda inflata cysts by mesosubstituted cationic porphyrins. Photochem. Photobiol. Sci. 1 : 560.
Kassab, K., Dei, D., Roncucci, G., Jori, G. and Coppellotti, O. (2003). Phthalocyanine- photosensitized inactivation of a pathogenic protozoan, Acanthamoeba palestinensis, Photochem. Photobiol. Sci. 2: 668.
Kasturi, C. and Platz, M.S. (1992). Inactivation of lambda phage with 658 nm light using DNA binding porphyrin sensitizer. Photochemistry and Photobiology. 56 : 427-429.
Kessel, D., Woodburn, K., Henderson, B.W., Chang, C.K. (1995). Sites of photodamage in vivo and in vitro by a cationic porphyrin. Photochem Photobiol. 62 : 875–881.
Kim, S.Y., Kwon, O.J. and Park, J.W. (2001). Inactivation of catalase and superoxide dis- mutase by singlet oxygen derived from photoactivated dye. Biochimie. 83: 437.
Kluck, R.M., Martin, S.J., Hoffman, B.M., Zhou, J.S., Green, D.R., Newmeyer, D.D. (1997) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16 : 4639-49.
Konan, Y.N., Berton, M., Gurny, R., Allemann, E. (2003). Enhanced photodynamic activity of meso-tetra(4- hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 18(3–4): 241–249.
Konig, K., Teschke, M., Sigusch, B., Glockmann, E., Eick, S., and Pfister, W. (2000). Red light kills bacteria via photodynamic action. Cell. Mol. Biol. (Noisy-le-Grand, France) 46 : 1297.
Kosaka, S., Akilov, O., ORiordan, K. and Hasan, T. (2007). A mechanistic study of delta- aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis, J. Invest. Dermatol. 127 : 1546.
Krouit, M., Granet, R., Branland, P., Verneuil, B., Krausz, P. (2006). New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorganic & Medicinal Chemistry Letters. 16 : 1651-1655.
Latorre-Esteves, E., Akilov, O.E., Rai, P., Beverley, S.M. and Hasan,T. (2010). Monitoring the efficacy of antimicrobial photodynamic therapy in a murine model of cutaneous leishmaniasis using L. major expressing GFP. Biophotonics. 3 : 328.
Lazzeri, D., Rovera, M., Pascual, L., Durantini, E. N. (2004). Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochemistry and Photobiology. 80: 286-293.
Lukšiene, Z. (2005). New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technology and Biotechnology. 43 : 411-418.
Luksiene, Z., Peciulyte, D. and Lugauskas, A. (2004). Inactivation of fungi in vitro by photosensitization: preliminary results. Ann. Agr. Env. Med.: AAEM. 11 : 215.
Maclean, M., MacGregor, S., Anderson J.G. and Woolsey, G.A. (2008). The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J. Photochem. Photobiol., B . 92: 180.
Magaraggia, M., Faccenda, F., Gandolfi, A. and Jori, G. (2006). Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. J. Environ. Monitor. 8 : 923.
Maisch, T.; Szeimies, R.M.; Jori, G.; Abels, C. (2004). Antibacterial photodynamic therapy in dermatology. Photochem. Photobiol. Sci. 3(10): 907-917.
Makowski, A. and Wardas, W. (2001). Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of elected micro-organisms. Curr Top Biophys. 25 : 19–25.
Menezes, S.; Capella, M.A.; Caldas, L.R. (1990). Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J. Photochem. Photobiol. B. 5 : 505-517.
Merchat, M., Bertolini, G., Giacomini, P., Villanueva, A., Jori, G. (1996). Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gramnegative bacteria. J. Photochem. Photobiol. B. 32(3): 153-7.
Mettath, S., Munson, B.R. and Pandey, R.K. (1999). DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug. Chem. 10: 94.
Meyer, F.P. (1991). Aquaculture disease and health management. J. Anim. Sci. 69 : 4201–4208.
Milson, C.E., Wilson, M., Macrobert, A.J., Bedwell, J. and Bown, S.G. (1996). The killing of Helicobacter pylori by low-power laser light in the presence of a photosensitiser. J. Med. Microbiol. 44 : 245.
Minnock, A.; Vernon, D.I.; Schofield, J.; Griffiths, J.; Parish, J.H.; Brown, S.T. (1996). Photoinactivation of bacteria. Use of a cationic watersoluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B. 32(3) : 159-164.
Moan, J. and Berg, K. (1991). The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 53 : 549–553.
Moan, J., Christensen, T. (1981). Cellular uptake and photodynamic effect of hematoporphyrin. Photobiochem Photobiophys. 2 : 291–9.
Moan, J., McGhie, J., Jacobsen, P.B. (1983). Photodynamic effects on cells in vitro exposed to hematoporphyrin derivative and light. Photochem Photobiol. 37 : 599–604.
Moan, J., Pettersen, E.O., Christensen, T. (1979). The mechanism of photodynamic inactivation of human cells in vitro in the presence of haematoporphyrin. Br J Cancer. 39 : 398–407.
Morgenthaler, J.B., Peters, S.J., Ceden˜ o,D.L., Constantino, M.H., Edwards, K.A., Kamowski, E.M., Passini,J.C., Butkus, B.E., Young, A.M., Lash, T.D. and Jones, M.A. (2008). Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis. Bioorg. Med. Chem. 16 : 7033.
Ohulchanskyy, T.Y., Roy, I., Goswami, L.N., Chen, Y., Bergey, E.J., Pandey, R.K. (2007). Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 7 : 2835–42.
Oriel, S. and Nitzan, Y. (2010). Photoinactivation of Candida albicans by its own endogenous porphyrins. Curr. Microbiol. 60 : 117.
O'Riordan, K.; Akilov, O.E.; Hasan, T. (2005). The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis Photodyn. Ther. 2 : 247-262.
Peng, Q., Moan, J., Nesland, J.M. (1996). Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol. 20 : 109–129.
Pereira, C.A., Romeiro, R.L., Costa, A.C., Machado, A.K., Junqueira, J.C., Jorge, A.O.(2010). Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med. 26(3): 341-348.
Reddi, E.; Ceccon, M.; Valduga, G.; Jori, G.; Bommer, J.C.; Elisei, F.; Latterini, L.; Mazzucato, U. (2002). Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem. Photobiol. 75(5) : 462-470.
Reyftman, J.B., Santus, R., Morliere, P., Kohan, E. (1986). Fluorescent products formed by reaction of amino acids and spermidine with lipid peroxides produced by porphyrin photosensitization in ionic micelles. Photobiochem Photobiophys. 11 : 197–208.
Roy, I., Ohulchanskyy, T.Y., Pudavar, H.E., Bergey, E.J., Oseroff, A.R., Morgan, J. (2003). Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 125 : 7860–5.
Savino, A., Angeli, G. (1985). Photodynamic inactivation of E. coli by immobilized or coated dyes on insoluble supports. Water Res. 19 :1465–1469.
Schafer, M., Schmitz C. and Horneck, G. (1998). High sensitivity of Deinococcus radio- durans to photodynamically- produced singlet oxygen. Int. J. Radiat. Biol. 74:249.
Schagen, F.H.E., Moor, A.C.E., Cheong, S.C., Cramer, S.J., Ormondt, H., Eb, A.J., Dubbelman ,T.M.A.R, Hoeben, R.C. (1999). Photodynamic treatment of adenoviral vectors with visible light: an easy and convenient method for viral inactivation. Gene Therapy. 6 : 873-881.
Schleier, P., Hyckel, P., Berndt,A., Bode,H.P., Albrecht,V., Hindermann,W., Kosmehl,H., Zenk,H. and Schumann, D. (2004). Photodynamic therapy of virus-associated epithelial tumours of the face in organ transplant recipients. J. Cancer Res. Clin. Oncol. 130 : 279-287.
Shao, Z. (2001). Aquaculture pharmaceuticals and biological: current perspectives and future, Adv. Drug Delivery Rev. 50 : 229–243.
Silva, E.M.P., Giuntini, F., Faustino, M.A.F., Tome, J.P.C., Neves, M., Tome, A.C., Silva, A.M.S., Santana-Marques, M.G., Ferrer-Correia, A.J., Cavaleiro, J.A.S., Caeiro, M.F., Duarte, R.R., Tavares, S.A.P., Pegado, I.N., d'Almeida, B., De Matos, A.P.A., Valdeira, M.L. (2005). Synthesis of cationic beta-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorganic &. Medicinal Chemistry Letters. 15 : 3333-3337.
Smijs, T., Bouwstra, J., Schuitmaker, H., Talebi, M. and Pavel, S. (2007). A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J. Antimicrob. Chemother. 59 : 433.
Smith, T. and Kain, K. (2004). Inactivation of Plasmodium falciparum by photodynamic excitation of heme cycle intermediates derived from aminolevulinic acid. J. Infect. Dis. 190: 184.
Specht, K.G., Rodgers, M.A. (1990). Depolarization of mouse myeloma cell membranes during photodynamic action. Photochem Photobiol. 51 : 319–324.
Tagmatarchis, N.; Shinohara, H. (2001). Fullerenes in medicinal chemistry and their biological applications. Mini. Rev. Med. Chem. 1(4): 339-348.
Tang, H.M., Hamblin, M.R. and Yow, C.M. (2007). A comparative in vitro photo- inactivation study of clinical isolates of multidrug-resistant pathogens. J. Infect. Chemother. 13 : 87.
Tanielian, C.; Schweitzer, C.; Mechin, R.; Wolff, C. (2001). Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic. Biol. Med. 30(2): 208-212.
Thomas, J.P., Girotti, A.W. (1989). Role of lipid peroxidation in hematoporphyrin derivative-sensitized photokilling of tumor cells: protective effects of glutathione peroxidase. Cancer Res. 49 : 1682–6.
Tome, J.P.C., Silva, E.M.P., Pereira, A., Alonso, C.M.A., Faustino, M.A.F., Neves, M., Tome, A.C., Cavaleiro, J.A.S., Tavares, S.A.P., Duarte, R.R., Caeiro, M.F., Valdeira, M.F. (2007). Synthesis of neutral and cationic tripyridylporphyrin-D-galactose conjugates and tha photoinactivation of HSV-1. Bioorg. Med. Chem. 15 : 4705-4713.
Toranzo, A.E., Magari˜nos, B. and Romalde, J.L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture. 246 : 37–61.
Volden, G., Christensen, T., Moan, J. (1981). Photodynamic membrane damage of hematoporphyrin derivativetreated NHIK 3025 cells in vitro. Photobiochem Photobiophys. 3 : 105–111.
Vzorov, A.N., Dixon, D.W., Trommel, J.S., Marzilli, L.G., Compans, R.W. (2002). Inactivation of human immunodeficiency virus type 1 by porphyrins. Antimicrobial Agents and Chemotherapy. 46 : 3917-3925.
Wagner, S.J., Skipchenko, A., Pugh, J.C., Suchmann,D.B., Ijaz, M.K. (2001). Duck hepatitis B photoinactivation by dimethylmethylene blue in RBC suspensions. Transfusion. 41: 1154-1158.
Wainwright, M. (1998). Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrobial Chemotherapy. 42 : 13-28.
Wainwright, M. (2000). Methylene blue derivatives – suitable photoantimicrobials for blood products disinfection. International Journal of Antimicrobial Agents. 16 : 381-394.
Wainwright, M. (2004). Photoinactivation of viruses. Photochemical and Photobiological Sciences. 3: 406-411.
Wainwright, M. and Crossley, K.B. (2004). Photosensitising agents – circumventing resistance and breaking down biofilms: a review. Int. Biodeter. Biodegr. 53: 119.
Wainwright, M. (2007). Natural Product Photoantimicrobials. Current Bioactive Compounds. 3(4) : 252-261.
Wang, S., Gao, R., Zhou, F., Selke, M. (2004). Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. Journal of Materials Chemistry. 14: 487-493.
Webber, J., Luo, Y., Crilly, R., Fromm, D., Kessel, D. (1996). An apoptotic response to photodynamic therapy with endogenous protoporphyrin in vivo. J Photochem Photobiol B. 35 : 209–211.
Wilder-Smith, C., Wilder-Smith, P., Grosjean, P., Van Den Bergh, H., Woodtli, A., Monnier, Dorta, P., G., Meister, F., and Wagnieres, G. ( 2002). Photoeradication of Helicobacter pylori using 5-aminolevulinic acid: preliminary human studies. Lasers Surg. Med. 31 : 18.
Wolfsen, H. and Wang, K. (1993). Tolerance of normal swine gastric epithelium to pho- todynamic therapy using topically applied haematoporphyrin derivative. Lasers. Surg. Med. 5 : 18.
Zaidi, S.I., Oleinick, N.L., Zaim, M.T., Mukhtar, H. (1993). Apoptosis during photodynamic therapy-induced ablation of RIF-1 tumors in C3H mice: electron microscopic, histopathologic and biochemical evidence. Photochem Photobiol. 58 : 771–776.
Zupan, K., Egyeki, M., Toth, K., Fekete, A., Herenyi, L., Modos K. and Csik, G. (2008). Comparison of the efficiency and the specificity of DNA-bound and free cationic porphyrin in photodynamic virus inactivation. J. Photochem. Photobiol. B. 90: 105.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)