##plugins.themes.bootstrap3.article.main##

Roopa Rani Samal Saiesha Gupta Sarita Kumar

Abstract

Among various mosquito-borne diseases, dengue is one of the most prevalent and quickly spreading diseases primarily transmitted by Aedes aegypti and Aedes albopictus. This review discusses the dengue epidemics in Asian countries with a focus on India and recognizes various climatic, socio-economic, and demographic factors and their complex interaction, involved in dengue expansion. The impact of climatic factors, such as temperature, moisture, and precipitation has been elucidated on the mosquito breeding and disease outbreaks; demonstrating a linear correlation of ambient temperature and humidity with dengue transmission, in contrast with the uncertain association of rainfall. Multifarious empirical models have been developed for estimating the climatic effects on dengue and are used as a baseline to assess the impact on future infections. However, the spatiotemporal distribution of dengue cases can only be predicted best using dynamic modelling based on a blend of long-term climatic data, vector ecology, and multiple etiological parameters. The human economic profile, migration and the behavioural pattern towards the epidemic have also impacted dengue transmission. Moreover, the impoverished countries are facing higher risks due to the lack of resources for proper medical care and mosquito management measures. Thus, advanced and confirmatory vector control interventions increased awareness of Aedes-borne diseases, and adequate decisions and policies may play a key role to prepare and combat the disease incidences across varied geographic range. Moreover, the increasing support for the research and development along with regular monitoring can help recognize the current and predict future distributions of Aedes and DENV better.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Aedes, Climate change, Dengue, Predicting models, Socio-economic factors

References
Adams, B. and Kapan, D.D. (2009). Man bites mosquito: Understanding the contribution of human movement to vector-borne disease dynamics. PloS One, 4(8): p.e6763. https://doi.org/10.1371/journal.pone.0006763
Alshehri, M.S.A. and Saeed, M. (2013). Dengue fever outburst and its relationship with climatic factors. World Appl. Sci. J., 22(4): 506-515. 0.5829/idosi.wasj.2013.2 2.04.443
Andraud, M., Hens, N. and Beutels, P. (2013). A simple periodic-forced model for dengue fitted to incidence data in Singapore. Math. Biosci., 244(1): 22-28.\ https://doi.or g/10.1016/j.mbs.2013.04.001
Arunachalam, N., Murty, U., Kabilan, L., Balasubramanian, A., Thenmozhi, V., Narahari, D., Ravi, A. and Satyanarayana, K. (2004). Studies on dengue in rural areas of Kurnool District, Andhra Pradesh, India. J. Amer. Mosq. Contr. Assoc., 20(1): 87-90.
Aziz, AL., Dieng, H., Ahmad, A.H., Mahyoub, J.A., Turkistani, A.M., Mesed, H., Koshike, S., Satho, T., Salmah, M.C., Ahmad, H., Zuharah, W.F. and Ramli, A.S. (2012). Household survey of the container–breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pacific J. Trop. Biomed., 2(11): 849-857. https://doi.org/10.1016/S2221-1691(12)60242-1
Barbazan, P., Guiserix, M., Boonyuan, W., Tuntaprasart, W., Pontier, D. and Gonzalez, J.P. (2010). Modelling the effect of temperature on transmission of dengue. Med. Vet. Entomol., 24(1): 66-73. https://doi.org/10.1111/j.1365-2915.2009.00848.x
Beebe, N.W., Cooper, R.D., Mottram, P. and Sweeney, A.W. (2009). Australia's dengue risk driven by human adaptation to climate change. PLoS Neglect. Trop. Dis., 3(5): p.e429. https://doi.org/10.1371/journal.pntd.0000429
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O. and Myers, M.F. (2013). The global distribution and burden of dengue. Nature, 496(7446): 504-507. https://doi.org/10.1038/nature12060
Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W. and Hay, S.I. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglect. Trop. Dis., 6(8): p.e1760. https://doi.org/10.1371/journal.pntd.0001760
Campbell-Lendrum, D., Manga, L., Bagayoko, M. and Sommerfeld, J. (2015). Climate change and vector-borne diseases: What are the implications for public health research and policy? Philos. Trans. Royal Soc. B: Biol. Sci., 370(1665): p.20130552. https://doi.org/10.1098/rst b.20 13.0552
Carrington, L.B., Seifert, S.N., Willits, N.H., Lambrechts, L. and Scott, T.W. (2013a). Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol., 50(1): 43-51. https://doi.org/10.1603/ME11242
Carrington, L.B., Seifert, S.N., Armijos, M.V., Lambrechts, L. and Scott, T.W. (2013b). Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Amer. J. Trop. Med. Hyg., 88(4): 689-697. https://doi.org/10.4269/ajtmh.12-0488
Carrington, L.B., Armijos, M.V., Lambrechts, L. and Scott, T.W., (2013c). Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Neglect. Trop. Dis., 7(4): p.e2190. https://doi.org/10.1371/journal.pntd.0002190
Chakravarti, A. and Kumaria, R. (2005). Eco-epidemiological analysis of dengue infection during an outbreak of dengue fever, India. Virol. J., 2(1): 32. https://doi.org/10.1186/1743-422X-2-32
Chakravarti, A., Arora, R. and Luxemburger, C. (2012). Fifty years of dengue in India. Transact. Royal Soc. Trop. Med. Hyg., 106(5): 273-282. https://doi.org/10.1016/j.trstm h.2011.12.007
Chaturvedi, U.C. and Nagar, R. (2008). Dengue and dengue haemorrhagic fever: Indian perspective. J. Biosci., 33(4): 429-441. https://www.ias.ac.in/article/fulltext/jbsc/0 3 3/0 4/0429-0441
Chaves, L.F. and Koenraadt, C.J. (2010). Climate change and highland malaria: Fresh air for a hot debate.  Quarterly Rev. Biol., 85(1): 27-55. https://doi.org/10.1086/650284
Chaves, L.F., Scott, T.W., Morrison, A.C. and Takada, T. (2014). Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in auto-correlated environments. Acta. Trop., 129: 15-24. https://doi.org/10.1016/j.actatropic a.20 13.02.025
Chen, S.C. and Hsieh, M.H. (2012). Modeling the transmission dynamics of dengue fever: implications of temperature effects. Sci. Total Environ., 431: 385-391. https://doi.org/10.1016/j.scitotenv.2012.05.012
Chikaki, E. and Ishikawa, H. (2009). A dengue transmission model in Thailand considering sequential infections with all four serotypes. J. Infect. Dev. Countr., 3(9): 711-722. https://doi.org/10.3855/jidc.616
Choi, Y., Tang, C.S., McIver, L., Hashizume, M., Chan, V., Abeyasinghe, R.R., Iddings, S. and Huy, R., (2016). Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia. BMC Publ. Hlth., 16(1): 1-7. https://doi.org/10.1186/s12889-016-2923-2
Descloux, E., Mangeas, M., Menkes, C.E., Lengaigne, M., Leroy, A., Tehei, T., Guillaumot, L., Teurlai, M., Gourinat, A.C., Benzler, J. and Pfannstiel, A. (2012). Climate-based models for understanding and forecasting dengue epidemics. PLoS Neglect. Trop. Dis., 6(2): p.e1470. https://doi.org/10.1371/journal.pntd.0001470
Earnest, A., Tan, S.B. and Wilder-Smith, A. (2012). Meteorological factors and El Nino Southern Oscillation are independently associated with dengue infections. Epidemiol. Infect. 140(7): 1244-1251. https://doi.org/10.1017/S095026881100183X
Ebi, K.L. (2014). Health in the new scenarios for climate change research. Internat. J. Environ. Res. Publ. Hlth., 11: 30-46. https://doi.org/10.3390/ijerph110100030
Elliott, P. and Wartenberg, D. (2004). Spatial epidemiology: Current approaches and future challenges. Environ. Hlth. Perspect., 112(9): 998-1006. https://doi.org/10.1289/ehp.6735
Focks, D.A., Daniels, E., Haile, D.G. and Keesling, J.E. (1995). A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. Amer. J. Trop. Med. Hyg., 53(5): 489-506. https://doi.org/10.4269/ajtmh.1995.53.489
Ghani, M.H., Humaira, M., Khushk, I.A., Ghouri, A.A., Memon, Y. and Memon, M.A. (2008). Dengue Virus Outbreak in the Year 2006 at a Tertiary Care Centre in Sindh. J. Liaquat Univ. Med. Hlth. Sci., 7(2): 71-74.
Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., La Ruche, G., Girdary, L. and Marrama, L. (2011). Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors. BMC Infect. Dis., 11(166): 1-13. https://doi.org/10.1186/1471-2334-11-166
Githeko, A.K. (2012). Advances in developing a climate-based dengue outbreak models in Dhaka, Bangladesh: Challenges and opportunities. Ind. J. of Med. Res., 136(1): 7-9.
Gomes, A.F., Nobre, A.A. and Cruz, O.G. (2012). Tem-poral analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Bra-zil, 2001-2009. Cad. Saúde Pública, 28: 2189-2197.
Gubler D.J. (1997). Dengue and dengue hemorrhag-ic fever: its history and resurgence as a global public health problem. Dengue and dengue hemorrhagic fever. London, United Kingdom; CAB International, pp. 1–22.
Gubler, D.J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev., 11(3): 480-496. https://doi.org/10.1128/CMR.11.3.480
Gubler, D.J. (2011a). Dengue, urbanization and globaliza-tion: The unholy trinity of the 21st century. Trop. Med. Hlth., 39(4): 3-11. https://doi.org/10.2149/tmh.2011-S05
Gubler, D.J. (2011b). Emerging vector-borne flavivirus diseases: are vaccines the solution? Expert Rev. Vac-cines, 10(5): 563-565. https://doi.org/10.1586/erv.11.35
Gubler D.J. (2012). The economic burden of dengue. Amer. J. Trop. Med. Hyg., 86:743–744.
Gubler, D.J. and Trent, D.W. (1993). Emergence of epi-demic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect. Agents Dis., 2(6): 383-393.
Gubler, D.J., Reiter, P., Ebi, K.L., Yap, W., Nasci, R. and Patz, J.A. (2001). Climate variability and change in the United States: Potential impacts on vector-and rodent-borne diseases. Environ. Hlth. Perspect., 109(2): 223-233. https://doi.org/10.1289/ehp.109-1240669
Halasa, Y.A., Shepard, D.S. and Zeng, W. (2012). Economic cost of dengue in Puerto Rico. Amer. J. Trop. Med. Hyg., 86(5),:745-752.https://doi.org/10.4269/ajtmh.201 2.1 1-0784
Hales, S., De Wet, N., Maindonald, J. and Woodward, A. (2002). Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. The Lancet, 360(9336): 830-834. https://doi.org/10.10 16/S0140-6736(02)09964-6
Halstead, S.B. (2008). Dengue virus–mosquito interactions. Annu. Rev. Entomol., 53: 273-291. https://doi.org/10.1146/annurev.ento.53.103106.093326
Hii, Y.L., Rocklöv J., Ng N., Tang C.S., Pang, F.Y. and Sauerborn R. (2009) Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob. Hlth. Action. 2: 1. doi: 10.3402/gha.v2i0.2036.
Howe (1977). A world geography of human diseases. New York, N.Y: Academic Press, Inc., pp. 621.
Hu, W., Clements, A., Williams, G., Tong, S. and Mengersen, K. (2012). Spatial patterns and socioecological drivers of dengue fever transmission in Queensland, Australia. Environ. Hlth. Perspect., 120(2): 260-266. https://doi.org/10.1289/ehp.1003270
IPCC. (2019) Working Group II: Impacts, adaptation and vulnerability.http://www.ipcc.ch/ipccreports/tar/wg2/index. php?idp=361
Jain, R., Sontisirikit, S., Iamsirithaworn, S. and Prendinger, H. (2019). Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect. Dis., 19(1):1-16. https://doi.org/10.1186/s12879-019-3874-x
Johansson, M.A., Dominici, F. and Glass, G.E. (2009a). Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Neglect. Trop. Dis., 3(2): p.e382.
https://doi.org/10.1371/journal.pntd.0000382
Johansson, M.A., Cummings, D.A. and Glass, G.E. (2009b). Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis. PLoS Med., 6(11): p.e1000168. https://doi.org/10.1371/journal.pmed.1000168
Karim, M.N., Munshi, S.U., Anwar, N. and Alam, M.S. (2012). Climatic factors influencing dengue cases in Dhaka city: A model for dengue prediction.  Ind. J. Med. Res., 136(1): 32-39.
Khormi, H.M., and Kumar, L. (2012). Assessing the risk for dengue fever based on socio-economic and environmental variables in a geographical information system environment. Geospat. Hlth., 6(2): 171–176.  http://www.geospa tialhealth.unina.it/
Koh, B.K., Ng, L.C., Kita, Y., Tang, C.S., Ang, L.W., Wong, K.Y., James, L. and Goh, K.T. (2008). The 2005 dengue epidemic in Singapore: epidemiology, prevention and control. Annals Acad. Med. Singapore, 37(7), 538.
Kuno, G. (1995). Review of the factors modulating dengue transmission. Epidemiol. Rev., 17(2): 321-335. https://doi.org/10.1093/oxfordjournals.epirev.a036196
Lee, H., Kim, J.E., Lee, S. and Lee, C.H. (2018). Potential effects of climate change on dengue transmission dynamics in Korea. PLoS One, 13(6): p.e0199205. https://doi.org/10.1371/journal.pone.0199205
Liu-Helmersson, J., Quam, M., Wilder-Smith, A., Stenlund, H., Ebi, K., Massad, E. and Rocklöv, J. (2016). Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine, 7: 267-277. https://doi.org/10.1016/j.ebiom.2016.03.046
Lu, L., Lin, H., Tian, L., Yang, W., Sun, J. and Liu, Q. (2009). Time series analysis of dengue fever and weather in Guangzhou, China. BMC Publ. Hlth., 9(1),395. https://doi.org/10.1186/1471-2458-9-395
McMichael, A.J. and Haines, A., (1997). Global climate change: The potential effects on health. British Med. J., 315(7111): 805-809. https://doi.org/10.1136/bmj.315.7111.805 
McMichael, A.J., Woodruff, R.E. and Hales, S. (2006). Climate change and human health: Present and future risks. The Lancet, 367(9513): 859-869. https://doi.org/10.1016/S0140-6736(06)68079-3
McSherry, J.A. (1982). Some medical aspects of the Darien scheme: Was it dengue? Scottish Med. J., 27(2): 183-184. https://doi.org/10.1177/003693308202700215.
Messina, J.P., Brady, O.J., Pigott, D.M., Golding, N., Kraemer, M.U., Scott, T.W., Wint, G.W., Smith, D.L. and Hay, S.I. (2015). The many projected futures of dengue. Nature Rev. Microbiol., 13(4): 230-239. https://doi.org/10.1038/nrmicro3430
Monaghan, A.J., Morin, C.W., Steinhoff, D.F., Wilhelmi, O., Hayden, M., Quattrochi, D.A., Reiskind, M., Lloyd, A.L., Smith, K., Schmidt, C.A. and Scalf, P.E. (2016). On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Current Outbreaks, 16(1). http://dx.doi.org/10.1371/currents.outbreaks.50dfc7f46798675f c 63e7d7da 563da76.
Morin, C.W., Comrie, A.C. and Ernst, K. (2013). Climate and dengue transmission: evidence and implications. Environ. Health. Perspect. 121(11-12):1264-1272. https://doi.org/10.1289/ehp.1306556
Mustafa, M. S., Rasotgi, V., Jain, S. and Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India: 71(1): 67–70. https://doi.org/10.1016/j.mjafi.2014.09.011
Nagao, Y., Thavara, U., Chitnumsup, P., Tawatsin, A., Chansang, C. and Campbell?Lendrum, D. (2003). Climatic and social risk factors for Aedes infestation in rural Thailand. Trop. Med. Internat. Hlth., 8(7): 650-659. https://doi.org/10.1046/j.1365-3156.2003.01075.x
National Vector Borne Disease Control Programme (NVBDCP) (2020). Dengue/DHF situation in India. [Online] Available at: https://nvbdcp.gov.in/index4.php?lang=1andlevel=0andlinkid=431andlid=3715 (Accessed on 18 August, 2020).
Nobuchi, H. (1979). The symptoms of a dengue-like illness recorded in a Chinese medical encyclopedia. Kanpo Rinsho, 26:422–425.
Pandya, G. (1982). Prevalence of dengue infections in India. Defence Sci. J., 4: 359–370.
Patz, J.A., Epstein, P.R., Burke, T.A. and Balbus, J.M. (1996). Global climate change and emerging infectious diseases. Jama, 275(3),217-223.doi:10.1001/jama.1996.0 3530270057032
Pineda-Cortel, M.R.B., Clemente, B.M. and Nga, P.T.T. (2019). Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data. Asian. Pacific. J. Trop. Med., 12(2): 60-66. doi: 10.4103/1995-7645.250838
Pinto, E., Coelho, M., Oliver, L. and Massad, E. (2011). The influence of climate variables on dengue in Singapore. Int. J. Environ. Health. Res, 21(6): 415-426. https://doi.org/10.1080/09603123.2011.572279
Proestos, Y., Christophides, G.K., Ergüler, K., Tanarhte, M., Waldock, J. and Lelieveld, J., (2015). Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos. Transact. Royal Soc. B: Biol. Sci., 370(1665): p.20130554. https://doi.org/10.1098/rstb.20 13.0554
Promprou, S., Jaroensutasinee, M. and Jaroensutasinee, K. (2011). Climatic factors affecting dengue haemorrhagic fever incidence in Southern Thailand. Dengue Bulletin, 29, 41-48.
Rabaa, M.A., Hang, V.T.T., Wills, B., Farrar, J., Simmons, C.P. and Holmes, E.C. (2010). Phylogeography of recently emerged DENV-2 in southern Vietnam. PLoS Negl. Trop. Dis, 4(7), p.e766. https://doi.org/10.1371/journal.p ntd.0000766
Ramachandran, V.G., Roy, P., Das, S., Mogha, N.S. and Bansal, A.K. (2016). Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: A 19-year retrospective analysis in East Delhi. Epidemiol. Hlth., 38. doi: 10.4178/epih.e2016052
Ramakrishnan, S.P., Gelfand, H.M., Bose, P.N., Sehgal, P.N. and Mukherjee, R.N. (1964). The epidemic of acute haemorrhagic fever, Calcutta, 1963: Epidemiology Inquiry. Ind. J. Med. Res., 52: 633-650.
Reiner Jr, R.c., Stoddard, S.T. and Scott T.W. (2014). Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics, 6: 30-36. https://doi.org/10.1016/j.epidem.2013.12.003
Reiter, P., Lathrop, S., Bunning, M., Biggerstaff, B., Singer, D., Tiwari, T., Baber, L., Amador, M., Thirion, J., Hayes, J. and Seca, C. (2003). Texas lifestyle limits transmission of dengue virus. Emerg. Infect. Dis., 9(1): 86-89. doi: 10.3201/eid0901.020220
Sarfraz, M.S., Tripathi, N.K., Tipdecho, T., Thongbu, T., Kerdthong, P. and Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Publ. Hlth., 12(1): 1-19.
Scott, T.W. and Morrison, A. C. (2010). Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: Vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol., 338: 115-128. doi: 10.1007/978-3-642-02215-9_9
Scott, T.W., Morrison, A.C., Lorenz, L.H., Clark, G.G., Strickman, D., Kittayapong, P., Zhou, H. and Edman, J.D. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Population dynamics. J. Med. Entomol., 37(1): 77-88. https://doi.org/10.1603/0022-2585-37.1.77
Shil, P. (2019). Rainfall and dengue occurrences in India during 2010–2016. Biomed. Res. J., 6(2): 56. doi: 10.4103/BMRJ.BMRJ_15_19
Sriprom, M., Chalvet-Monfray, K., Chaimane, T., Vongsawat, K. and Bicout, D.J. (2010). Monthly district level risk of dengue occurrences in Sakon Nakhon Province, Thailand. Sci. Total Environ., 408(22): 5521-5528. https://doi.org/10.1016/j.scitotenv.2010.08.024
Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Soldan, V.P., Kochel, T.J., Kitron, U., Elder, J.P. and Scott, T.W. (2009). The role of human movement in the transmission of vector-borne pathogens. PLoS Neglect. Trop. Dis., 3(7): p.e481. https://doi.org/10.1371/journal.pntd.0000481
Stoddard, S.T., Forshey, B.M., Morrison, A.C., Paz-Soldan, V.A., Vazquez-Prokopec, G.M., Astete, H., Reiner, R.C., Vilcarromero, S., Elder, J.P., Halsey, E.S. and Kochel, T.J. (2013). House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci., 110(3): 994-999. https://doi.org/10.1073/pnas.12 13349110
Thammapalo, S., Chongsuwiwatwong, V., McNeil, D. and Geater, A. (2005). The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth., 36(1): 191-196.
Tipayamongkholgul, M. and Lisakulruk, S. (2011). Socio-geographical factors in vulnerability to dengue in Thai villages: A spatial regression analysis. Geospat. Hlth, 5(2): 191-198. http://www.geospatialhealth.unina.it/
Tuladhar, R., Singh, A., Varma, A. and Choudhary, D.K., 2019. Climatic factors influencing dengue incidence in an epidemic area of Nepal. BMC Res. Notes, 12(1):1-7.
https://doi.org/10.1186/s13104-019-4185-4
Vazquez-Prokopec, G.M., Stoddard, S.T., Paz-Soldan, V., Morrison, A.C., Elder, J.P., Kochel, T.J., Scott, T.W. and Kitron, U., (2009). Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Internat. J. Hlth. Geograph., 8(1): 68. https://doi.org/10.1186/1476-072X-8-68
Walker, K.R., Joy, T.K., Ellers-Kirk, C. and Ramberg, F.B. (2011). Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment. J. Amer. Mosq. Contr. Assoc., 27(2): 135-141. https://doi.org/10.2 987/10-6078.1
Watson, J.T., Gayer, M. and Connolly, M.A. (2007). Epidemics after natural disasters. Emerg. Infect. Dis., 13(1): 1-5. doi: 10.3201/eid1301.060779
Wearing, H.J. and Rohani, P. (2006). Ecological and immunological determinants of dengue epidemics. Proc. Natl. Acad. Sci., 103(31): 11802-11807. https://doi.org/10.1073/pnas.0602960103
WHO (World Health Organization) (2019a). WHO region of the Americas records highest number of dengue cases in history; cases spike in other regions. Available at https://www.who.int/news-room/detail/21-11-2019-who-region-of-the-americas-records-highest-number-of-dengue-cases-in-history-cases-spike-in-other-regions
WHO (World Health Organization) (2019b). Dengue Situation Update Number 559. WHO.
WHO (World Health Organization) (2020a). Dengue and severe dengue. Available at http://www.who.int/mediacentre/factsheets/fs117/en/.
WHO (World Health Organization) (2020b). Dengue Situation Update Number 597. WHO.
Win, T. (2013). Dengue fever cases hit a high in parts of Southeast Asia. Retrieved from Thomson Reuters Foundation: https://news.trust.org/item/20130625114148-6jw h n/
Yuan, H.Y., Wen, T.H., Kung, Y.H., Tsou, H.H., Chen, C.H., Chen, L.W. and Lin, P.S. (2019). Prediction of annual dengue incidence by hydro-climatic extremes for southern Taiwan. Internat. J. Biometeorol., 63(2): 259-268. https://doi.org/10.1007/s00484-018-01659-w
Citation Format
How to Cite
Samal, R. R., Gupta, S., & Kumar, S. (2020). An overview of factors affecting dengue transmission in Asian region and its predictive models. Journal of Applied and Natural Science, 12(3), 460-470. https://doi.org/10.31018/jans.v12i3.2360
More Citation Formats:
Section
Research Articles