##plugins.themes.bootstrap3.article.main##

Shashank Shekhar Tiwari Francis Tambo Rakhi Agarwal

Abstract

Due to anthropogenic activities and natural abundance, lead exposure is a common phenomenon. Neurotoxic and genotoxic effects of lead are widely known. Recent studies have suggested that lead exposure can affect young generation and transfer to the progeny thus posing a great threat for future generation. The present study was focused on lead toxicity in terms of locomotion and growth of Caenorhabditis elegans (N2 wild type) at three sub-lethal doses (3µM, 15 µM and 30 µM) of Pb (NO3)2 for 24 hours (sub-chronic exposure). Caenorhabditis elegans is a nematode with an established eco- toxicity marker model organism, due to its short life cycle and ease to monitor. After lead  exposure, significant toxic manifestations were observed in locomotion of the nematode in terms of omega bends (+350% for 30 µM exposure dose, p<0.001), reversals (-26.98%, -49% and -66.35% for 3 µM, 15 µM and 30 µM exposure doses respectively, p<0.001), turn counts (-38.66%, -62.61% and -81.93% for 3 µM, 15 µM and 30 µM exposure doses respectively, p<0.001 ) and peristaltic speed alterations (+97.83%, +225.92% and +454.63% for 3 µM, 15 µM and 30 µM exposure doses respectively, p<0.001). Successive reduction in the body length at lower doses shows remarkable toxic alterations in nematodes. The obtained data may be useful to extrapolate the effects of lead exposure on humans, as many of the similar pathways and cellular processes affected by Pb in humans are also present in C. elegans.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

C. elegans, Growth, Lead, Locomotion, Sub-lethal exposure

References
Adekomi, Damilare. (2017). Lead induces inflammation and neurodegenerative changes in the rat medial prefrontal cortex. Anatomy-An International Journal of Ezperimental and Clinical Anatomy. 11. 79-86. https://doi.org/10.2399/ana.17.015.
Anderson, G. L., Boyd, W. A., Williams, P. L. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Enviromental Toxicology and Chemistry, 20(4): 833-838.https://doi.org/10.1897/1551-5028(2001)020<0833:AOSEFT>2.0.CO;2.
Angstman, N.B., Frank, H.G., and Schmitz, C. (2016). Advanced behavioral analyses show that the presence of food causes changes in Caenorhabditis elegans movement. Frontiers in Behavioral Neuroscience, 10( MAR), 1-10.https://doi.org/10.3389/fnbeh.2016.00060.
Anis, T. H., Elkaraksy A., Mostafa T., Gadalla, A., Imam, H., Hamdy, L., Abu el-Alla, O. (2007) Chronic lead exposure may be associated with erectile dysfunction. The Journal of Sexual Medicine, (SEP);4(5):1428-34.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
Chao, E. (2016). Optimizing pharmacological lifespan extension: Testing chemical compounds for additive effects on longevity. Graduate Master's Theses, Capstones, and Culminating Projects. 222.https://doi.org/10.33015/dominican.edu/2016.bio.09
Choi J. (2008). Caenorhabditis elegans as a biological model for multilevel biomarker analysis in environmental toxicology and risk assessment. Toxicological research, 24(4), 235–243.https://doi.org/10.5487/TR.2008.24.4.235.
Dayong, W., and Xiaojuan, X. (2008). Assessment of locomotion behavioral deects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Enviromental Sciences (China), 20(9):1132-7.https://doi.org/10.1016/S1001-0742(08)62160-9.
Hart, A. C., ed. Behavior (July 3, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.87.1,http://www.wormbook.org.
Jiang Y., Chen J., Wu Y., Wang Q., Li H. (2016). Sublethal toxicity endpoints of heavy metals to the nematode Caenorhabditis elegans. PLOS ONE 11(1): e0148014.
Lewis, J. A., and Fleming, J. T. (1995). Chapter 1: Basic culture methods. Methods in Cell Biology, 48(C), 3-29. https://doi.org/10.1016/S0091-679X(08)61381-3.
Li, W., Han, S., Gregg, T. R., Kemp, F. W., Davidow, A. L., Louria, D. B., Siegel, A., Bogden, J. D. (2003). Lead exposure potentiates predatory attack behavior in the cat. Environmental Research, 92(3):197–206. https://doi.org/10.1016/s0013-9351(02)00083-x
Li, W. H., Shi, Y. C., Tseng, I. L., and Liao, V. H. (2013). Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PloS one, 8(4), e62387. https://doi.org/10.1371/journal.pone.0062387.
Monnet-Tschudi, F., Zurich, M., Boschat, C., Corbaz, A., and Honegger, P. (2006). Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Reviews on Environmental Health, 21(2), pp. 105-118. https://doi.org/10.1515/REVEH.2006.21.2.105.
Nevin, R. (2007). Understanding international crime trends: the legacy of preschool lead exposure. Environmental Research, 104(3):315–336. https://doi.org/10.1016/j.envres.2007.02.008.
Pierce-Shimomura, J. T., Morse, T. M., andLockery, S. R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. Journal of Neuroscience, 19(21), 9557-9569.https://doi.org/10.1523/jneurosci.19-21-09557.1999.
Pohl, H. R., Roney, N., and Abadin, H. G. (2014). Metal ions affecting the neurological system, (MAY). Metal ions in Life Sciences, 8:247-62.https://doi.org/10.1039/9781849732116-00247.
Xing, X., Rui, Q., Du, M., Wang, D. (2009). Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol, 56, 732–741. https://doi.org/10.1007/s00244-009-9307-x.
Rogan, W. J., Dietrich, K. N., Dockery, D. W., Salganik, M., Radcliffe, J., Jones, R. L., Ragan, N. B., Chisolm, J. J. Jr., Rhoads, G. G. (2001). The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. New England Journal of Medicine, 344(19):1421–1426.
Ruszkiewicz, J. A., Pinkas A., Miah, M. R., Weitz, R. L., Lawes, M. J. A., Akinyemi, A. J., Aschner, M. (2018). Caenorhabditis elegans as a model in developmental neurotoxicology. Toxicology and Applied Pharmacology, (October 2017), 1-10.https://doi.org/10.1016/j.taap.2018.03.016.
Stiernagle, T. (FEB11, 2006). Maintenance of Caenorhabditis elegans. Wormbook, ed. The C. elegans Research Community, WormBook,http://www.wormbook.org.https://doi.org/10.1895/wormbook.1.101.1.
Swain, S. C., Keusekotten, K., Baumeister, R., and Stu, S. R. (2004). C. elegans metallothioneins: New Insights into the Phenotypic effects of Cadmium Toxicosis, Journal of Molecular Biology, 951-959. https://doi.org/10.1016/j.jmb.2004.06.050.
Tang, B., Tong, P., Xue, K. S., Williams, P. L., Wang, J., Tang, L. (2019). High-throughput assessment of toxic effects of metal mixtures of cadmium (Cd), lead (Pb), and manganese (Mn) in nematode Caenorhabditis elegans. Chemosphere, 234, 232-241.https://doi.org/10.1016/j.chemosphere.2019.05.271.
Tsalik, E. L., and Hobert, O. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology, 56(2),178-197. https://doi.org/10.1002/neu.10245.
Wang, H. L., Chen, X. T., Yang, B., Ma, F. L., Wang, S., Tang, M. L., Hao, M. G., and Ruan, D. Y. (2008). Case-control study of blood lead levels and attention deficit hyperactivity disorder in Chinese children. Environmental health perspectives, 116(10), 1401–1406. https://doi.org/10.1289/ehp.11400
Wani, A. L., Ara, A., and Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009.
Willhite, C. C., and Mirkes P. E. (2014). Developmental toxicology. Encyclopedia of Toxicology: Third Edition, (11), 14-44. https://doi.org/10.1016/B978-0-12-386454-3.00014-2.
Williams, P. L., and Dusenbery, D. B. (1988). Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicology and Industrial Health, 4(4), 469–478.https://doi.org/10.1177/074823378800400406.
Ye, B., Rui, Q., Wu, Q., and Wang, D. (2010). Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercuryeExposure in nematodes. PLOS ONE 5(11): e14052. https://doi.org/10.1371/journal.pone.0014052.
Yu, Z., Chen, X., Zhang, J., Wang, R., Yin, D. (2013). Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater beahvior and growth inhibitions in the progeny. Ecotoxicology and Enviromental Safety, 178-184.
Yu, Z., Zhang, J., and Yin, D. (2016). Multigenerational effects of heavy metals on feeding, growth, initial rand antioxidants in Caenorhabditis elegans. PLOS ONE 11(4): e0154529. https://doi.org/10.1371/journal.pone.0154529.
Zhao, B., Khare, P., Feldman, L., and Dent, J. A. (2003). Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal andiIts environment. Journal of Neuroscience, 23 (12) 5319-5328. https://doi.org/10.1523/JNEUROSCI.23-12-05319.2003
Citation Format
How to Cite
Tiwari, S. S. ., Tambo, F. ., & Agarwal, R. (2020). Assessment of lead toxicity on locomotion and growth in a nematode Caenorhabditis elegans . Journal of Applied and Natural Science, 12(1), 36-41. https://doi.org/10.31018/jans.v12i1.2227
More Citation Formats:
Section
Research Articles