Vishwas Garg Rouf Ahmad Dar Urmila Gupta Phutela


The present investigations observed the effect of chemical, enzymatic, biological and micro-wave pretreatment on paddy straw for enhancement of biogas production. Chopped and soaked paddy straw was subjected to chemicals Na2CO3 (1%) and NaOH (2%) concentrations, microwave irradiation (720 watt, 30 min), fungal (spawn impregnated, 7 days) and crude silicase (24 hrs) pretreatment. The proximate and chemical analysis showed 16.0% and 12.1% reduction in lignin and silica content in the case of Na2CO3 pretreated paddy straw whereas 23.0% and 46.8% reduction was observed in enzymatic pretreatment with 43.7% and 31.1% enhancement in biogas production respectively. This clearly indi-cates that Pleurotus ostreatus MTCC 142 is silicolytic as well as ligninolytic in nature. Enzymatic pre-treatment was also compared with, microwave (30 min) and fungal pretreatment which showed 31.2% and 32.8% reduction in silica content enhancing biogas production by 19.7% and 42.6% respectively. NaOH pretreatment showed a maximum increase in biogas production i.e. 49.7% as compared to 1% pretreated sample which showed 28.5% enhancement. The results indicated that the NaOH pretreatment was one of the potential methods to increase biogas production of paddy straw.


Download data is not yet available.


Metrics Loading ...




Biogas production, Ligninolytic, Pleurotus ostreatus, Pretreatment, Silicolytic

Ai, B., Chi, X., Meng, J., Sheng, Z., Zheng, L., Zheng, X. and Li, J. (2016). Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture. Front Microbiol. 7 :1-10.
Akhtar, N., Jain, A. K., Goyal, D. and Goyal, A. (2014). Surfactant assisted microwave-acid pretreatment of leaf litter biomass for enhanced enzymatic release of sugars. Proc 7th International Conference on Environmental Science and Technology Department of Biotechnology, Thapar University, Patiala, 147004, Punjab, India
Akhter, S., Kotru, R., Dar, N. A., Rasool, R. and Din, R. M. U. (2015). Resource conservation technology in rice wheat cropping system. Best: JHAMS. 1 (2) : 25-28
AOAC (2000) Association of Official Analytical Chemists, Official methods of Analysis, J AOAC Int. 83 (4): 1020-25, 17th Edition, Maryland, USA
Armstrong, J. M., Myers, D. V., Verpoorte, J. A. and Edsall, J. T. (1966). Purification and properties of human erythrocyte carbonic anhydrase. J. Biol Chem. 241 : 5137-4519
Arvanitoyannis, I. S. and Tserkezou, P. (2008). Corn and rice waste: A comparative and critical presentation of methods and current and potential uses of treated waste. Int J Food Sci. Tech., 43 : 958–988
Balasubramaniam, M. K. and Rajarathinam, R. (2013). Implementation of White rot fungal Pretreated Rice straw for Sustainable Bioethanol Production by Saccharomyces cerevisiae. IJERT, 2 (11) : 4047-4053
Blanchette, R. A., Burnes, T. A., Eerdmans, M. M. and Akhtar, M. (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping purposes. Holzforschung. 42 : 109-115
Chen, J., Fales, S. L., Varga, G. A. and Royse, D. J. (1996). Biodegradability of free monomeric cell-wall-bound phenolic acids in maize stover by two strains of white-rot fungi.J. Sci. Food Agr., 71 : 145-150
Cheng, S. Y.,Zheng, Y., Yu, C. W .,Zheng, Y., Yu, C. W., Dooley, T. M., Jenkins, B. M., Jean, S. and Gheynst, V .(2010). Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Appl. Biochem Biotechnol., 162 : 1768–1784
Contreras, L. M., Schelle, H., Sebrango, C. R. and Pereda, I. (2012). Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Wat Sci Tech., 65 (6) : 1142-1149
Dai, B., Zhu, A., Mu, F., Xu, N. and Wu, Z. (2014). Experiments on anaerobic digestion of rice straw for biogas production under NaOH pretreatment. Adv Mat Res., 953-954 : 220-223
Dehghani, M., Karimi, K. and Sadeghi, M. (2015). Pretreatment of rice straw for the improvement of biogas production. Energ Fuels. 29 : 3770-3775
Economic uses of rice straw, Cultural rice research board http://www.carrb.com/84rpt/StrawUses.htm, accessed online: 18/11/16
FAO and Rice Market Monitor (2014). Trade and Markets Division Food and Agriculture Organization of the United Nations. 17: 4
Gadde, B., Bonnet, S., Menke, C. and Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut., 157 : 1554–1558
Gammal, A., Kamel, Z., Adeeb, Z. and Helmy, S. M. (1998). Biodegradation of lignocellulosic substances and production of sugars and lignin degradation intermediates by four selected microbial strains. Polym.Degrad Stab., 61 : 535-542
Harun, S. and Goek, S. K. (2016). Effect of Sodium Hydroxide Pretreatment on Rice Straw Composition. Indian J Sci Technol., 9 (21): 1-9
He, Y., Pang, Y., Liu, Y., Li, X. and Wang, K. (2009). Physico chemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energ. Fuels, 22 : 2775–2781
Henderson, M. E. K. and Duff, R. B. (1965). The release of metallic and silicate ions from mineral rocks and soils by fungal activity. J. Soil Sci., 14 : 236-246
Jafri, U. A., Javed, M. T. and Chugtai, I. R. (2011). Process investigation for conversion of municipal solid waste into liquid fuel. JPIChE. 39 : 23–27
Jaisamut K., Paulová L., Patáková P., Rychtera M. and Melzoch, M. (2013). Optimization of alkali pretreatment of wheat straw to be used as substrate for biofuels production. Plant Soil Environ., 59 (12) : 537-542
Kangle, K. M., Kore, S. V., Kore, V. S. and Kulkarni, G. S. (2012). Recent trends in anaerobic co-digestion: A Review. UJERT. 2 (4) : 210-219
Kaur, K. (2009). Effect of chemicals and biological treatment of paddy straw on biogas production. M.Sc Thesis, Punjab Agricultural Univeristy, Ludhiana
Kaur, K. (2013). Development of lignin and silica solubilizing microbial consortium for paddy straw pretreatment to enhance biogas production Ph.D. dissertation, Punjab Agricultural Univeristy, Ludhiana
Kaur, K. and Phutela, U. G. (2016). Sodium carbonate pretreatment: an approach towards desilicification of paddy straw and enhancement in biogas production. Paddy Water Environ., 14 (1) : 133-221
Khaleghian, H., Karimi, K. and Behzad, T. (2015). Ethanol production from rice straw by sodium carbonate pretreatment and Mucorhiemalis fermentation. Ind Crop Prod., 76 : 1079-1085
Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res., 48 : 3713–3729
Mustafa, A. M., Poulsen, T. G., and Sheng, K. (2016). Fungal pretreatment of rice straw with Pleurotusostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy, 180 : 661–671
Negi, S. and Kumari, J. (2014). Development of bioprocess for the production of laccase by Pleurotus ostreatus MTCC 1802 using evolutionary optimization technique. Indian J Exp Biol., 52 (11) : 1106-1111
Omidvar, M., Karimi, K. and Mohammadi, M. (2016). Enhanced ethanol and glucosamine production from rice husk by NAOH pretreatment and fermentation by fungus Mucorhiemalis. Biofuel Res J. 11 : 475-481
Park, C. Y. and Kim, S. J. (2014). Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy., 47 (1) :31-35
Phutela, U. G. and Sahni, N. (2013). Microscopic structural changes in paddy straw pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 Indian J. Microbiol., 53 (2) : 227–231
Platt, M. W, Hadar, Y. and Chet, I. (1984). Fungal activities involved in lignocellulose degradtion by Pleurotus spp. Appl. Microbiol. Biotechnol. 20 (2): 150-154
Qiu, Y. S., Ling, Q., Yong, S., Tao, L. and Fang, Y. D. (2011). Experiments on anaerobic digestion of NaOH-pretreated peanut shell for biogas production. J. Agro-Environ Sci., 30 (3) : 573-578
Raeisi, S. M., Tabatabaei, M., Ayati, B., Ghafari, A. and Mood, S. H. (2016). A novel combined pretreatment method for rice straw using optimized EMIM [Ac] and Mild NaOH. Waste Biomass Valor., 7 : 97-107
Renewables Global Status Report (2016). Renewable Energy Policy Network for the 21st Century (REN 21), www.ren21.net.ISBN 978-3-98181-0-7
Saha, B. C. (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol., 30 : 279–291
Saini, J. K. and Saini, R. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotechnol., 5 : 337-353
Schroder, H. C., Krasko, A., Pennec, G. L. and Muller, W. E. G. (2003). Silicase, an enzyme which degrades biogenous amorphous silica: Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol., 33 : 249-268
Soest, V. (2006). Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol., 130 (3-4) : 137-171
Streets, D. G., Yarber, K. F., Woo, J. H. and Carmichael, G. R. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem Cycles 17 : 1099–1119
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. and Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng., 100 : 637-643
Thakur, S., Shrivastava, B., Ingale, S., Kuhad, R. C. and Gupte, A. (2013). Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. Biotechnol., 3 (5) : 365-372
Toender, E. J. and Borchert, T. M. (2014). Use of enzymes having silicase activity US20140335577A1
Wang, D., Sakoda, A. and Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technol., 78:293-300
Wang, X., Hu, S., Gan, L., Wiens, M. and Muller, W. E. G. (2010). Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success. Terra Nova., 22 (1) : 1–11
Wang, Y., Peng, Z., Liao, Q. and Chen, R. (2012). Effect of magnesium ions on biogas production characteristics of lettuce and potato peelings in anaerobic digester. T Chi Soc of Agric Eng., 28 (6) : 217-221
Wang, Z., Keshwani, D. R., Redding, A. P.and Cheng, J. J. (2010). Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol., 101 (10) : 3583-3585
Werle, L. B., Garcia, J. C., Kuhn, R. C., Schwaab, M., Foletto, E. L, Cancelier, A., Sergio, L. J. and Mazutti, M. A. (2013). Ultrasound-assisted acid hydrolysis of palm leaves (Roystonea oleracea) for production of fermentable sugars. Ind. Crops Prod. 45 : 128–132
Yang, L., Cao, J., Jin, Y., Chang,H. M., Jameel, H., Phillips, R. and Li, Z. (2012). Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresource Technol. 124 : 284-291
Yang, L., Cao,J.,Mao, J. and Jin, Y. (2013). Sodium carbonate–sodium sulphite pretreatment for improving the enzymatic hydrolysis of rice straw. Ind Crop Product., 43 : 711-717
Younas, R., Zhang, S., Zhang, L., Luo, G., Chen, K., Cao, L., Liu, Y. and Hao, S. (2016). Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiOnanoplates. Catal. Today., 274:
Zhang, Q. and Cai, W. (2008). Enzymatic hydrolysis of alkali pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioeng., 32 : 1130-1135
Zhu, S., Wu, Y., Yu, Z., Liao, J. and Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis. Process Biochem., 40:3082-3088
Citation Format
How to Cite
Garg, V., Dar, R. A., & Phutela, U. G. (2017). Comparative evaluation of different pretreatment methods on biogas production from paddy straw. Journal of Applied and Natural Science, 9(3), 1525-1533. https://doi.org/10.31018/jans.v9i3.1396
More Citation Formats:
Research Articles