##plugins.themes.bootstrap3.article.main##

Asima Gazal Z. A. Dar A. A. Lone I. Abidi G. Ali

Abstract

Abiotic and biotic constraints have widespread yield reducing effects on maize and should receive high priority for maize breeding research. Molecular Breeding offers opportunities for plant breeders to develop cultivars with resilience to such diseases with precision and in less time duration. The term molecular breeding is used to describe several modern breeding strategies, including marker-assisted selection, marker-assisted backcrossing, marker-assisted recurrent selection and genomic selection. Recent advances in maize breeding research have made it possible to identify and map precisely many genes associated with DNA markers which include genes governing resistance to biotic stresses and genes responsible for tolerance to abiotic stresses. Marker assisted selection (MAS) allows monitoring the presence, absence of these genes in breeding populations whereas marker assisted backcross breeding effectively integrates major genes or quantitative trait loci (QTL) with large effect into widely grown adapted varieties. For complex traits where multiple QTLs control the expression, marker assisted recurrent selection (MARS) and genomic selection (GS) are employed to increase precision and to reduce cost of phenotyping and time duration. The biparental mapping populations used in QTL studies in MAS do not readily translate to breeding applications and the statistical methods used to identify target loci and implement MAS have been inadequate for improving polygenic traits controlled by many loci of small effect. Application of GS to breeding populations using high marker densities is emerging as a solution to both of these deficiencies. Hence, molecular breeding approaches offers ample opportunities for developing stress resilient and high-yielding maize cultivars.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Abiotic, Biotic, Maize, Molecular breeding, Stresses

References
Allard, R.W. (1999). Principles of plant breeding, 2nd edn. New York, NY: Wiley.
Bernardo, R. (2010). Genome wide selection with minimal crossing in self-pollinated crops. Crop Sci., 50: 624-627.
Bernardo, R. and Charcosset, A. (2006). Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci., 46: 614–21.
Bernardo, R. and Yu, J. (2007). Prospects for genome wide selection for quantitative traits in maize. Crop Sci., 47: 1082-1090.
Collard, B.C.Y. and Mackill, D.J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci., 363: 557–572.
Cooper, M., Smith, O.S., Merrill, R.E., Arthur, L., Polich, D.W. and Loffler, C.M. (2006). Integrating breeding tools to generate information for efficient breeding: past, present, and future. In Plant Breeding: The Arnel R. Hallauer International Symposium, 141-154.
Crosbie, T.M., Eathington, S.R., Johnson, G.R., Edwards, M., Reiter, R., Stark, S., Mohanty, R.G., Oyervides, M., Buehler, R.E. and Walker, A.K. (2006). Plant breeding: past, present, and future. In Plant Breeding: The Arnel R. Hallauer International Symposium, 3-50.
Dwivedi, S.L., Crouch, J.H., Mackill, D.J., Xu, Y., Blair, M.W., Ragot, M.,Upadhyaya, H.D. and Ortiz, R. (2007). The molecularization of public sector crop breeding: progress, problems, and prospects. Advances in Agronomy, 7: 3-8.
Eathington, S.R., Crosbie, T.M., Edwards, M.D., Reiter, R.S. and Bull, J.K. (2007). Molecular markers in commercial breeding. Crop Science, 47: 154-163.
Frisch, M., Bohn, M. and Melchinger, A.E. (1999). Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci., 39: 967–975.
Garg, A., Prasanna, B.M. and Sharma, R.C. (2009). Genetic analysis and mapping of QTLs for resistance to banded leaf and sheath blight (Rhizoctonia solani f.sp. sasakii) in maize. In: Proceedings of 10th Asian regional maize workshop (October 20–23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF (in press).
George, M.L.C, Prasanna, B.M. and Rathore, R.S. (2003). Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor. Appl. Genet., 107: 544-551.
Gerpacio, R.V. and Pingali, P.L. (2007). Tropical and subtropical maize in Asia: production systems, constraints, and research priorities. CIMMYT, Mexico DF.
Goddard, M.E. and Hayes, B.J. (2007). Genomic selection. J. Anim. Breed. Genet.124: 323-330.
Gosal, S.S., Wani, S.H. and Kang, M.S. (2009). Biotechnology and drought tolerance. Journal of Crop Improvement 23: 19-54.
Guo, Z., Tucker, D.M., Liu, J., Kishore, V. and Gay, G. 2011. Evaluation of genome wide selection efficiency in maize nested association mapping populations. Theor. Appl. Genet., 124: 261-275.
Gupta, P.K., Langridge, Peter and Mir, R.R. (2009). Markerassisted wheat breeding: present status and future possibilities. Mol. Breeding 26(2): 145-161
Hao, Z., Li, X. and Xie, C. (2008). Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann. Appl. Biol., 153: 73-83.
Heffner, E.L., Jannink, J.L., Iwata, H., Souza, E. and Sorrells, M.E. (2011). Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci., 51: 2597-2606.
Heffner, E.L., Lorenz, A.J., Jannink, J.L. and Sorrells, M.E. (2010). Plant breeding with genomic selection: gain per unit time and cost. Crop Sci., 50: 1681-1690.
Heffner, E.L., Sorrells, M.E. and Jannink, J.L. (2009). Genomic selection for crop improvement. Crop Sc., 49: 1-12.
Holland, J. B. (2004) Implementation of molecular markers for quantitative traits in breeding programs-challenges and opportunities. In Proc. 4th Int. Crop Sci. Congress. Brisbane, Australia, 26 September-1 October.
Hospital, F. (2005). Selection in backcross programmes. Phil. Trans. R. Soc. B., 360: 1503-1511.
Hospital, F. and Charcosset, A. (1997). Marker-assisted introgression of quantitative trait loci. Genetics, 147: 1469–1485.
Ibitoye, D.O. and Akin-Idowu, P.E. (2010). Marker-assistedselection (MAS): A fast track to increase genetic gain in horticultural crop breeding. African Journal of Biotechnology 9 (52): 8889-8895.
Jannink, J.L., Lorenz, A.J. and Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 9: 166-177.
Kumar, S., Kumari, P., Kumar, U., Grover, M., Singh, A.K., Singh, R. and Sengar, R.S. (2013). Molecular approaches for designing heat tolerant wheat. J. Plant Biochem. Biotechnol. DOI 10.1007/s13562-013-0229-3.
Lorenzana, R. E. and Bernardo, R. (2009). Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor. Appl. Genet., 120: 151-161.
Mano, Y., Omori, F., Loaisiga, C. H., and Bird, R. M. (2009). QTL mapping of aboveground adventitious roots during flooding in maize x teosinte “Zea nicaraguensis” backcross population. Plant Root, 3: 3-9.
Mano, Y., Omori, F., Muraki, M., and Takamizo, T. (2005). QTL mapping of adventitious root formation under flooding conditions in tropical maize. Breed. Sci., 55: 343-347.
Meuwissen, T. (2007). Genomic selection: marker assisted selection on a genome wide scale. J. Anim. Breed. Genet., 124: 321-322.
Meuwissen, T.H.E., Hayes, B.J. and Goddard, M.E. (2001). Prediction of total genetic value using genome wide dense marker maps. Genetics, 157: 1819-1829.
Mir, R.R. and Varshney, R.K. (2012). Future Prospects of Molecular Markers in Plants. Molecular Markers in Plants. John Wiley & Sons, Inc.
Nair, S.K., Prasanna, B.M., Garg, A. (2005). Identification and validation of QTLs conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize. Theor. Appl. Genet., 110:1384-1392.
Nakaya, A. and Isobe, S.N. (2012). Will genomic selection be a practical method for plant breeding? Annals of Botany, DOI:10.1093/aob/mcs109.
Osman, K.A., Tang, B., Wang, Y., Chen, J., Yu, F., Li, L., Han, X., Zhang, Z., Yan, J., Zheng, Y., Yue, B., and Qiu, F. (2013). Dynamic QTL Analysis and Candidate Gene Mapping for Waterlogging Tolerance at Maize Seedling Stage. PLoS ONE 8(11): e79305. doi:10.1371/ journal.pone.0079305.
Pathak, M.R., Teixeira da Silva, J.A. and Wani, S.H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops 5(1): 1-10.
Poland, J.A., Bradbury, P.J., Buckler, E.S. and Nelson, R.J. (2011). Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci. USA. 108(17): 6893-6898.
Prasanna, B.M., Beiki, A.H., Sekhar, J.C., Srinivas, A. and Ribaut, J.M. (2009a). Mapping QTLs for component traits influencing drought stress tolerance of maize in India. J. Plant Biochem. Biotech. 18:151-160.
Prasanna, B.M., Hettiarachchi, K. and Mahatman, K. (2009b). Molecular marker-assisted pyramiding of genes conferring resistance to Turcicum leaf blight and Polysora rust in maize inbred lines in India. In: Proceedings of 10th Asian regional maize workshop (October 20-23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF (in press).
Prasanna, B.M., Mahatman, K.H., Rajan, A., Singh, O.N., Kaur, B., Zaidi, P.H., Azrai, M. and Pixley, K.N. (2010a). Molecular marker-assisted pyramiding of genes conferring resistance to Turcicum leaf blight and Polysora rust in maize inbred lines in India. In: Proceedings of 10th Asian regional maize workshop (October 20–23, 2008, Makassar, Indonesia). CIMMYT, Mexico DF.
Prasanna, Pixley, B.M. K., Warburton, M.L. and Xie, C.X. (2010b). Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breeding 26: 339-356.
Qiu, F., Zheng, Y., Zhang, Z., and Xu, S. (2007). Mapping of QTL associated with water-logging tolerance during the seedling stage in maize. Ann. Bot., 99: 1067-1081.
Ragot, M. and Lee, M. (2007). Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In Markerassisted Selection: Current Status and Future Perspectives in Crops Livestock Forestry and Fish. Rome: Food and Agriculture Organization of the United Nations: 117-150.
Ribaut, J.M. and Hoisington, D. (1998). Marker-assisted selection: new tools and strategies. Trends Plant Sci., 3: 236-239.
Ribaut, J.M. and Ragot, M. (2007). Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. J. Exp. Bot. 58: 351-360.
Ribaut, J.M., Jiang, C. and Hoisington, D. (2002). Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci., 42: 557-565.
Ribaut, J.M., Vicente, M.C. and Delannay, X. (2010). Molecular breeding in developing countries: challenges and perspectives. Current Opinion in Plant Biology, 13: 1-6.
Rosewarne, G.M., Herrera-Foessel, S.A., Singh, R.P., Huerta-Espino, J., Lan, C.X. and He, Z.H. 2013. Quantitative trait loci of stripe rust resistance in wheat. Theor. Appl. Genet.126: 2427-2449.
Rosewarne, G.M., Singh, R.P., Huerta-Espino, J., Herrera-Foessel, S.A., Forrest, K.L., Hayden, M.J. and Rebetzke, G.J. (2012). Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor. Appl. Genet. 124: 1283-1294.
Salina, E., Dobrovolskaya, O., Efremova, T., Leonova, I. and Roder, M.S. (2003). Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed., 122: 116-119.
Stoskopf, N.C., Tomes, D.T. and Christie, B.R. (1993). Plant breeding: theory and practice. San Francisco, CA; Oxford: Westview Press Inc.
Technow, F., Burgerand, A. and Melchinger, A.E. (2013). Genomic Prediction of Northern Corn Leaf Blight Resistance in Maize with Combined or Separated Training Sets for Heterotic Groups. G3: Genes Genomics Genetics 3: 197-203.
Tuberosa, R., Salvi, S. and Giuliani, S. (2007). Genome-wide approaches to investigate and improve maize response to drought. Crop Sci., 47: S120-S141.
Van Inghelandt, D., Melchinger, A.E., Martinan, J.P. and Stich, B. (2012). Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol. 12: 56.
Wani, S.H., Singh, N.B., Haribhushan, A. and Mir, J.I. (2013). Compatile solute engineering in plants for abiotic stress tolerance- role of glycine betaine. Current genomics 14(3): 157.
Wong, C.K. and Bernardo, R. (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theoretical and Applied Genetics, 116(6): 815-824.
Xiao, Y.N., Li, X.H. and George, M.L. (2005). Quantitative trait loci analysis of drought tolerance and yield in maize in China. Plant Mol. Biol. Reporter, 23:155-165.
Xu, Y., Xie, C., Wan, J., He, Z. and Prasanna, B.M. 2013. Marker-Assisted Selection in Cereals: Platforms, Strategies and Examples. P. K. Gupta and R. K. Varshney (eds.), Cereal Genomics II © Springer DOI: 10.1007/978-94-007-6401-9-14.
Yang, E.N., Rosewarne, G.M., Herrera-Foessel, S.A., Huerta-Espino, J., Tang, Z.X., Sun, C.F., Ren, Z.L. and Singh, R.P. (2013). QTL analysis of the spring wheat “Chapio” identifies stable stripe rust resistance despite intercontinental genotype × environment interactions. Theor. Appl. Genet. 126: 1721-1732.
Zaidi, P. H., Maniselvan, P., Srivastava, A., Yadav, P., and Singh, R. P. (2010). Genetic analysis of water-logging tolerance in tropical maize (Zea mays L.). Maydica, 55: 17-26.
Zhao, M., Zhang, Z. and Zhang, S. (2006a). Quantitative trait loci for resistance to Banded Leaf and Sheath Blight in maize. Crop Sci., 46:1039-1045.
Zhao, W., Canaran, P. and Jurkuta, R. (2006b). Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucl. Acids Res., 34: D725–D757.
Zhong, S., Dekkers, J.C.M., Fernando, R.L. and Jannink, J.L. (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 182: 355-364.
Section
Research Articles

How to Cite

Molecular breeding for resilience in maize - A review. (2015). Journal of Applied and Natural Science, 7(2), 1057-1063. https://doi.org/10.31018/jans.v7i2.731