Article Main

Mamta Gupta Veena Chawla Pankaj Garg Neelam Yadav Renu Munjal Bunty Sharma

Abstract

Microsatellite markers were used for genetic analysis of terminal heat tolerance in F2 (PBW373 × WH1081) population of wheat (Triticum aestivum L. em. Thell). Two parents were evaluated in field under normal sown and late sown conditions. For genotyping DNA from both parents PBW373 and WH1081 was amplified using 200 SSRs. Only 22 SSRs produced polymorphic bands, of size between 100 to 300 bp and an average of 1.45 alleles. The single marker analysis identified 19 markers indicating the putative QTLs for yield, its components and heat stress related physiological traits. The number of markers on these 16 linkage groups varied from one to four. On A genome 13 QTLs on B genome 5 QTLs and on D genome 9 QTLs were identified, respectively. The A, B and D genomes had 1360.3 cM, 272.4 cM and 919.5 cM of linkage coverage with average interval distances of 104.63 cM, 54.48 cM and 102.16 cM/Marker. A total of nine QTLs were resolved following composite interval mapping, one QTL was detected at a LOD score equal to threshold value of 2.5 while eight at LOD scores above the threshold value. All the nine QTLs were shown to be on definitive location on chromosome 3A (QDh.CCSHAU-3A, QDa.CCSHAU-3A and QPm.CCSHAU-3A), chromosome (QBm.CCSHAU-5A, QCtd.CCSHAU-5A and QCl.fl.CCSHAU-5A), chromosome6A (QPh.CCSHAU-6A) and chromosome3B (QTgw.CCSHAU and QMts.CCSHAU-3B). Use of these markers save times, resources and energy that are needed not only for raising large segregating populations for sveral generations, but also for estimating the parameters used for selection.

Article Details

Article Details

Keywords

Genotyping, QTL, MAS, Wheat

References
Badaruddin, M., Reynolds, M.P. and Ageeb, O.A.A. (1999). Wheat management in warm environments: effect of organic and inorganic fertilizers, irrigation frequency, and mulching. Agron J., 91: 975-983.
Basten, C.J., Weir, B.S. and Zeng, Z.B. (2000). QTL Cartog-rapher, Version 1.15. A Reference Manual and Tutorial for QTL Mapping. Department of Statistics, North Carolina State University, Raleigh, NC.
Borner, A., Schumann, E., Furste, A., Coster, H., Leithold, B., Roder, S. and Weber, E. (2002). Mapping of quanti-tative trait loci determining agronomic important char-acters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet., 105(6-7): 921-936.
Chen, X., Temnykh, S., Xu, Y., Cho, Y.G. and McCouch, S.R. (1997). Development of a microsatellite frame-work map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet., 95: 553-567.
Chu, C.G., Chao, S., Friesen, T.L., Faris, J.D., Zhong, S. and Xu, S.S. (2010). Identification of novel tan spot resis-tance QTLs using an SSR-based linkage map of tetraploid wheat. Mol. Breed., 25: 327-338.
Dias, A.S and Lidon, F.C. (2009). Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J. Agron. Crop Sci., 195: 137-147.
Fischer, R.A. and Byerlee, D.B. (1991). Trends of wheat production in the warmer areas: Major issues and eco-nomic consideration. P.3-27. In: wheat for the nontradi-tional warm areas. Proc. Conf., Iguazu, Brazil. 29 July-3 Aug. 1990. CIMMYT. Mexico. DF.
IPCC (2012). Managing the Risks of Extreme Events and Disastersto Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Inter-governmental Panel on Climate Change, eds C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. M. D. Ebi, et al. (Cam- bridge: Cambridge Uni-versity Press). 582p.
Kumar, N., Kulwal, P.L., Balyan, H.S. and Gupta, P.K. (2007). QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed., 19: 163-177.
Kumar, R., Prasad, B.K., Singh, M.K., Verma, A. and Tyagi, B.S. (2014). Genetic analysis for phenological and physiological traits in wheat (Triticum aestivum L.) under heat stress environment. Indian J. Agric. Res., 43(1): 62-66.
Paliwal, R., Roder, M.S., Kumar, U., Srivastava, J.P. and Joshi, A.K. (2012). QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet., 125: 561-575.
Pandey, G.C., Jagadish, R.J., Sareen, S., Siwach, P., Singh, N.K. and Tiwari, R. (2013). Molecular investigations on grain filling rate under terminal heat stress in bread wheat (Triticum aestivum L.). African J. Biotech., 12(28): 4439-4445.
Peleg, Z.Y., Saranga, T. Suprunova, Y., Ronin, M.S., Roder, A., Kilian, A.B., Korol and Fahima, T. (2008). High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor. Appl. Genet., 117: 103-115.
Rane, J., Pannu, R.K., Sohu, V.S., Saini, R.S., Mishra, B., Shoran, J., Crossa, J., Vargas, M., Joshi, K. (2007). Performance of yield and stability of advanced wheat cultivar under heat stress environments of the indo- gangetic plains. Crop Sci., 47: 1561-1572.
Rustgi, S., Shafqat, M.N., Kumar, N., Baenziger, P.S., Ali, M.L., Dweikat, I.B., Campbell, T. and Gill, K.S. (2013). Genetic Dissection of Yield and Its Component Traits Using High-Density Composite Map of Wheat Chromo-some 3A: Bridging Gaps between QTLs and Underly-ing Genes. PLOS. 8(7): 1-12.
Sadat, S., Saeid, K.A., Bihamta, M.R., Torabi, S., Salekdeh, S.G.H. and Ayeneh, G.A.L. (2013). Marker Assisted Selection for Heat Tolerance in Bread Wheat. World Appl. Sci. J., 21(8): 1181-1189.
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984). Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chro-mosomal location and population dynamics. Proc. Nat. Acad .Sci. (USA). 81: 8014-8018.
Talukdar, S.K., Babar, M.A., Vijayalakshmi, K., Poland, J., Prasad, P.V.V., Bowden, R. and Fritz, A. (2014). Map-ping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). MBC Genetics, 1597: 1-13.
Tewolde, H., Fernandez, C.J. and Erickson, C.A. (2006). Wheat cultivars adapted to post-heading high tempera-ture stress. J. Agron. Crop Sci., 192: 111-120.
Wang, R.X., Hai, L., Zhang, X.Y., You, G.X., Yan, C.S. and Xiao, S.H. (2009). QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai 9 Yu8679. Theor. Appl. Genet., 118: 313-325.
Wang, S., Basten, C.J., Zeng, Z.B. (2010). Windows QTL cartographer 2.5. Department of Statistics, North Caro-lina State University, Raleigh, NC, (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).
Wollenweber, B., Porter, J.R. and Schellberg, J. (2003). Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci., 189: 142-150.
Wu, X.S., Wang, Z.H., Chang, X.P. and Jing, R.L. (2010). Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J. Exp. Bot., 61: 2923-2937.
Yang, J., Sears, R.G., Gill, B.S. and Paulsen, G.M. (2002). Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 126: 275-282.
Zeng, Z.B. (1994). Precision mapping of quantitative trait loci. Genetics, 136: 1457-1468.
Section
Research Articles

How to Cite

Genetic analysis of yield and heat stress related traits in wheat (Triticum aestivum L. em. Thell) using microsatellite markers. (2015). Journal of Applied and Natural Science, 7(2), 739-744. https://doi.org/10.31018/jans.v7i2.676