Use of zinc solubilizing biofertilizers for increasing the growth and yield of cereals: A review
Article Main
Abstract
In recent years, the increase due to the rise in the high yielding verities led to the high-rate application of chemicals and pesticides in the soil. These chemical fertilizers give great responses to the farmers on a short-term basis, but in the long term, they harm the soil and human health by interfering in the food chain. The use of biofertilizers is a very good alternative for crop production in a sustainable and environment-friendly manner. Numerous bacteria and fungi can be used as biofertilizers for making the essential nutrients available to the plants which are associated with the rhizosphere of different crops, either symbiotically or non-symbiotically. Zinc plays a vital role in crop growth and achieving a great yield among the various macro and micronutrients. Zinc is responsible for Auxin synthesis, chlorophyll formation, protein metabolism, carbohydrate fixation, disease and stress tolerance. Zn deficiency is a global issue that gradually lowers crop output and productivity. Using zinc solubilizing microorganisms is one of the most effective sustainable approaches to achieving higher yield and restoring soil productivity. These microorganisms solubilize the available zinc pool in the soil so plants can easily uptake zinc. Bacillus subtilis, Thiobacillus thioxidans, Rhizobium, Pantoea sp., Gluconacetobacter, Saccharomyces sp. and PGPR (Plant Growth Promoting Rhizobacteria) are involved in zinc solubilizing process and boost the soluble zinc in the soil. Using zinc solubilizers can reduce the fertilizer requirement of the crop to about 25-50% in combination with inorganic zinc fertilizers, so it reduces overall fertilizer cost.
Article Details
Article Details
Biofertilizer, Inorganic fertilizers, Rhizosphere, Symbiotic, Non-symbiotic, Zinc solubilizing microorganisms
Aiqing, Z., Zhang, L., Ning, P., Chen, Q., Wang, B., Zhang, F., ... & Zhang, Y. (2022). Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Critical reviews in food science and nutrition, 62(28), 7917-7928.
Ali, M., Ahmed, I., Tariq, H., Abbas, S., Zia, M. H., Mumtaz, A., & Sharif, M. (2023). Growth improvement of wheat (Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. Frontiers in Plant Science, 14, 1140454.
Arrey-Salas, O., Caris-Maldonado, J. C., Hernández-Rojas, B., & Gonzalez, E. (2021). Comprehensive genome-wide exploration of C2H2 zinc finger family in grapevine (Vitis vinifera L.): Insights into the roles in the pollen development regulation. Genes, 12(2), 302.
Ash, M., Yadav, J., & Yadav, J. S. (2020). Yield attributes of rice (Oryza sativa) as affected by integrated use of zinc oxide and zinc solubilizers. Indian J. Agric. Sci, 90, 2180-2184.
Asoegwu, C. R., Awuchi, C. G., Nelson, K. C. T., Orji, C. G., Nwosu, O. U., Egbufor, U. C., & Awuchi, C. G. (2020). A review on the role of biofertilizers in reducing soil pollution and increasing soil nutrients. Himalayan Journal of Agriculture, 1(1), 34-38.
Bashir, A., Rehman, M. Z., Hussaini, K. M., Adrees, M., Qayyum, M. F., Sayal, A. U., ..& Alyemeni, M. N. (2021). Combined use of zinc nanoparticles and co-composted biochar enhanced wheat growth and decreased Cd concentration in grains under Cd and drought stress: a field study. Environmental Technology & Innovation, 23, 101518.
Batabyal, B. (2020). Soil Microbes as Bio fertilizer: Sustainable Agriculture and Environments. International Journal of Pharmacy & Life Sciences, 11(9).
Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. Soil health, 265-285.
Belete, T., & Yadete, E. (2023). Effect of Mono Cropping on Soil Health and Fertility Management for Sustainable Agriculture Practices: A Review. J. Plant Sci, 11, 192-197.
Bhatt, M. K., Labanya, R., & Joshi, H. C. (2019). Influence of long-term chemical fertilizers and organic manures on soil fertility-A review. Universal Journal of Agricultural Research, 7(5), 177-188.
Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil contamination-threats and sustainable solutions, 2020, 1-10.
Cao, M. L., Li, Y. X., & Du, H. L. (2020). Effects of exogenous zinc on the photosynthesis and carbonic anhydrase activity of millet (Setaria italica L.). Photosynthetica, 58(3).
Charles Wesley, J., & Dawson, J. (2023). Influence of Biofertilizers and Gibberellic Acid on Growth and Yield of Black gram (Vigna mungo L.). Int. J. Environ. Clim. Change, 13(9), 329-335.
Chaturvedi, V., R. Ranjan, M. Chaudhary, S. Ahmed, and K. K. Dwivedi (2020).: Expression of zinc transporter genes in oat (Avena sativa L.) as influenced by zinc-solubilizing bacteria. Inernational. Journal Current Microbiology and Applied Sciences, 9(7), 3448-3457 .
Chaudhary, M., Dwivedi, K. K., Sah, R. P., Gajghate, R., Ahmed, S., & Singh, K. K. (2021). Zinc biofortification of fodder oat (Avena sativa L.) through bioinoculant and synthetic fertilizers. Range Management and Agroforestry, 42(1), 181-185.
Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518.
Dar, S. A., Bhat, R. A., Dervash, M. A., Dar, Z. A., & Dar, G. H. (2021). Azotobacter as biofertilizer for sustainable soil and plant health under saline environmental conditions. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 231-254.
Dawuni, S. M. (2023). Effect of soil and foliar application of zinc and sulphur on growth and yield of rice (Oryza sativa l.) under irrigated and rainfed conditions (Doctoral dissertation).
Divya, B. S. (2022). Chapter-2 Biofertilizers: Their Role, Uses and Different Methods of Application. Chief Editor Dr. Neeraj Kumar, 13.
Fasusi, O. A., Cruz, C., & Babalola, O. O. (2021). Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture, 11(2), 163.
Ghodke, S. D., & Jadhav, D. S. (2023). Potential of consortium of iron and zinc solubilizing microorganisms along with graded levels iron & zinc sources on yield and quality of sugarcane.
Ghosh, S., Pareek, N., Rawerkar, K. P., Chandra, R., Pachauri, S. P., & Kaushik, S. (2019). Prospective zinc solubilizing microorganisms for enhanced growth and nutrition in maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences, 8(8), 2771-2727.
Gummadala, K. R., Tomar, S. S., Perli, V. H., & Kaushik, M. (2022). Agronomical performance of black gram (Vigna mungo L.) in the presence of organic manures and bio-fertilizers in typic haplustalf. Pharma Innovation, 11(6), 1927-1931.
Haroon, M., Khan, S. T., & Malik, A. (2022). Zinc-solubilizing bacteria: an option to increase zinc uptake by plants. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health, 207-238.
Hosamani, V., Yalagi, M., Sasvihalli, P., Hosamani, V., Nair, K. S., Harlapur, V. K., ... & Mishra, R. K. (2020). Importance of micronutrients (Zinc) in crop production: A review. International Journal of Chemical Studies, 8(1), 1060-1064.
Kasirao, G., Himavarsha, P., & Tomar, S. (2023). Maximizing Nutrient Efficiency and Profitability: Integrating NADEP Compost and Phosphorous Solubilizing Bacteria in Black Gram (Vigna mungo. L) Cultivation. International Journal of Plant & Soil Science, 35(18), 1103-1110.
Khalid, S., Amanullah, & Ahmed, I. (2022). Enhancing zinc biofortification of wheat through integration of zinc, compost, and zinc-solubilizing bacteria. Agriculture, 12(7), 968.
Khoshru, B., Mitra, D., Mahakur, B., Sarikhani, M. R., Mondal, R., Verma, D., & Pant, K. (2020). Role of soil rhizobacteria in utilization of an indispensable micronutrient zinc for plant growth promotion. J. Crit. Rev, 21, 4644-4654.
Kour, D., Rana, K. L., Kaur, T., Yadav, N., Halder, S. K., Yadav, A. N., ... & Saxena, A. K. (2020). Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. In New and future developments in microbial biotechnology and bioengineering (pp. 177-202). Elsevier.
Kumar, A., Himavarsha, P., Kasirao, G., Tanwar, P., & Verma, Y. (2023). Revolutionizing Tomato Cultivation through Panchgavya Enriched NFT Hydroponics. International Journal of Environment and Climate Change, 13(10), 3289-3297.
Kumar, D., Dutt, S., Raigond, P., Changan, S. S., Lal, M. K., Tiwari, R. K., ... & Singh, B. (2021). Different biofertilizers and their application for sustainable development. Microbial Technology for Sustainable Environment, 31-48.
Kumar, M. S., Reddy, G. C., Phogat, M., & Korav, S. (2018). Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 1915-1921.
Kumar, R., Kumar, R., & Prakash, O. (2019). Chapter-5 the impact of chemical fertilizers on our environment and ecosystem. Chief Ed., 35(69), 1173-1189.
Kumar, S., Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094.
Kushwaha, P., Kashyap, P. L., Pandiyan, K. & Bhardwaj, A. K. (2020). Zinc-solubilizing microbes for sustainable crop production: current understanding, opportunities, and challenges. Phytobiomes: current insights and future vistas, 281-298.
Mrabet, R. (2023). Sustainable agriculture for food and nutritional security. In Sustainable Agriculture and the Environment (pp. 25-90). Academic Press.
Neelima, J., Rao, C.S., Latha, M., & Prasad, P.V.N. (2021). Effect of zinc solubilizers on growth and yield of maize (Zea mays L.). The Pharma Innovation Journal, 10(8), 1496-1498.
Nitu, R., Rajinder, K. & Sukhminderjit, K. (2020). Zinc solubilizing bacteria to augment soil fertility—A comprehensive review. Int. J. Agricult. Sci. Vet. Med, 8, 38-44.
Nosheen, S., Ajmal, I. & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868.
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B. & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, 1-20.
Pradhan, S., Meena, R. P., Ram, H., Rana, K., Parihar, M., & Singh, A. K. (2021). Zn-solubilizing microorganism: a novel perspective for sustainable agriculture. In Biofertilizers (pp. 69-81). Woodhead Publishing.
Prajapati, J., Yadav, J., Jaiswal, D. K., Prajapati, B., Tiwari, S., & Yadav, J. (2022). Salt tolerant indigenous Zn solubilizing bacteria isolated from forest organic soils promotes yield and root growth in Oryza sativa under zinc deficient alluvial soil. Geomicrobiology Journal, 39(6), 465-476.
Prathap, S., Thiyageshwari, S., Krishnamoorthy, R., Prabhaharan, J., Vimalan, B., Gopal, N. O., & Anandham, R. (2022). Role of zinc solubilizing bacteria in enhancing growth and nutrient accumulation in rice plants (Oryza sativa) grown on zinc (Zn) deficient submerged soil. Journal of Soil Science and Plant Nutrition, 1-14.
Rai, M. & Sen, S. (2020). Microbes For The Improvement Of Soil Health. Ttpp, 457.
Rehmaan, I. U., Jan, B., Khan, N. F., Islam, T., Rehman, S., Sheergojri, I. A., ... & Wani, A. H. (2022). Nitrogen biofertilizers: role in sustainable agriculture. In Advances in Plant Nitrogen Metabolism (pp. 170-184). CRC Press.
Rion, M. S. I., Rahman, A., Khatun, M., Zakir, H. M., Rashid, M. H. & Quadir, Q. F. (2022). Screening of zinc solubilizing plant growth promoting rhizobacteria (PGPR) as potential tool for biofortification in rice. Journal of Experimental Agriculture International, 44(9), 132-143.
Salman, M. A. & Al-Shibani, J. A. K. (2020). Effect of bacterial and fungal bio-fertilizer and potassium fertilizer on iron, copper and zinc availability and yield of Zea mays L. crop. Plant Archives (09725210), 20(2).
Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T. K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiology, 202(4), 677-693.
Sasidhar, P., Singh, S. & Sanodiya, L. K. (2022). Effect of spacing and biofertilizer on growth and yield of black gram (Vigna mungo L.). The Pharma Innov J, 11(2), 2866-9.
Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon.
Shaji, R. (2021). Growth, yield and secondary metabolite production responses to microbial elicitation in Withania somnifera (L.) Dunal (Doctoral dissertation, Department of Plantation Crops and Spices, College of Agriculture, Vellayani).
Shakeel, M., Hafeez, F. Y., Malik, I. R., Farid, A., Ullah, H., Ahmed, I., ... & Yasin, M. (2023). Serratia marcescens strain FA-4 enhances zinc content in rice grains by activating the zinc translocating enzymes.
Sharma, B., Yadav, L., Pandey, M. & Shrestha, J. (2022). Application of biofertilizers in crop production: A review. Peruvian Journal of Agronomy, 6(1), 13-31.
Silva, L. I. D., Pereira, M. C., Carvalho, A. M. X. D., Buttrós, V. H., Pasqual, M. & Dória, J. (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), 462.
Srithaworn, M., Jaroenthanyakorn, J., Tangjitjaroenkun, J., Suriyachadkun, C. & Chunhachart, O. (2023). Zinc solubilizing bacteria and their potential as bioinoculant for growth promotion of green soybean (Glycine max L.) Merr. PeerJ, 11, e15128.
Suganya, A., Saravanan, A. & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal, 51(15), 2001-2021.
Upadhayay, V. K., Singh, A. V. & Khan, A. (2022). Cross talk between zinc-solubilizing bacteria and plants: A short tale of bacterial-assisted zinc biofortification. Frontiers in Soil Science, 1, 788170.
Verma, D., Meena, R. H., Sukhwal, A., Jat, G., Meena, S. C., Upadhyay, S. K. & Jain, D. (2023). Effect of ZSB with graded levels of zinc fertilizer on yield and zinc uptake under maize cultivation. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93(2), 379-385.
Verma, D., Meena, R. H., Sukhwal, A., Jat, G., Meena, S. C., Upadhyay, S. K. & Jain, D. (2023). Effect of ZSB with graded levels of zinc fertilizer on yield and zinc uptake under maize cultivation. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 93(2), 379-385.
Waqeel, J., & Khan, S. T. (2022). Microbial biofertilizers and micronutrients bioavailability: approaches to deal with zinc deficiencies. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health, 239-297.
Yadav, R. C., Sharma, S. K., Ramesh, A., Sharma, K., Sharma, P. K. & Varma, A. (2020). Contribution of Zinc-Solubilizing and-Mobilizing Microorganisms (ZSMM) to enhance zinc bioavailability for better soil, plant, and human health. Rhizosphere Microbes: Soil and Plant Functions, 357-386.
Yadav, R. C., Sharma, S. K., Varma, A., Rajawat, M. V. S., Khan, M. S., Sharma, P. K., ... & Saxena, A. K. (2022). Modulation in biofertilization and biofortification of wheat crop by inoculation of zinc-solubilizing rhizobacteria. Frontiers in Plant Science, 13, 777771.
Yadav, R. C., Sharma, S. K., Varma, A., Singh, U. B., Kumar, A., Bhupenchandra, I., ... & Singh, H. V. (2023). Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Frontiers in Microbiology, 14, 1210938..
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)