Prevalence of β-lactamase enzymes and molecular detection of the AmpC gene in Pseudomonas aeruginosa isolated from various clinical infections
Article Main
Abstract
Most species of Gram-negative bacteria produce the enzyme β-lactamase, which can inactivate the structure of β-lactam antibiotics. Pseudomonas aeruginosa has revealed countless resistances to β-lactam antibiotics and others over the last few decades. Therefore, the present study aimed to determine the prevalence of ampicillin β-lactamase (AmpC) enzymes, conduct a molecular investigation of the AmpC gene expressing the enzymes and assess their impact on the widespread occurrence of antibiotic resistance in P. aeruginosa. One hundred and fourteen P. aeruginosa isolates were collected from wounds, UTIs, burns, ears, and sputum and identified using various culture media, tests, and the VITEK 2 compact system. The isolates were identified, exhibiting high resistance rates of 100% to Ampicillin and 95.4% to Nalidixic acid. They also demonstrated resistance rates of 18.2% to Chloramphenicol and 22.7% to Ciprofloxacin. The Iodometric method test revealed that 63.1% produced β-lactamase enzymes, while the remaining 36.8% did not produce β-lactamase enzymes. The finding of the CHROM agar and Extended-Spectrum β-Lactamases) ESBLs (tests showed that 100% of isolates produced broad-spectrum β-lactamase. The double disk synergy test (DDST) for detecting AmpC enzymes showed that 19.2% tested positive, while 80.7% were unable to produce these enzymes. Molecular detection of the AmpC gene revealed that 81.8% of the isolates possessed this gene, while 18.1% did not. Out of the 22 isolates of P. aeruginosa studied, 18 exhibited a high percentage of the AmpC gene. This gene produces penicillinase enzymes, contributing to resistance against most studied antibiotics.
Article Details
Article Details
Ampicillin β-lactamase enzymes, AmpC gene, Double Disk Synergy Test, Extended-Spectrum β-Lactamases, Psuedomonas eruginosa
Aghazadeh, M., Hojabri, Z., Mahdian, R., Nahaei, M. R., Rahmati, M., Hojabri, T. & Pajand, O. (2014). Role of efflux pumps: MexAB-OprM and MexXY (-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. Infection, Genet. Evo., 24, 187-192. DOI: org/10.1016/j.meegid.2014.03.018.
AL-Rodhan, A. M. (2008). Prevalence of β-Lactamase Producing Staphylococcus aureus in Slaughtered Cow's Lungs and Liver. Bas.J.Vet.Res., 7(1), DOI: org/10.33762/bvetr.2008.55452.
Bae, I. K., Jang, S. J., Kim, J., Jeong, S. H., Cho, B. & Lee, K. (2011). Interspecies dissemination of the bla gene encoding PER-1 extended-spectrum β-lactamase. Antimicrobial agent. Chemo., 55(3), 1305-1307. DOI: org/10.1128/AAC.00994-10.
Barceló, I. M., Jordana-Lluch, E., Escobar-Salom, M., Torrens, G., Fraile-Ribot, P. A., Cabot, G. & Oliver A. (2022). Role of enzymatic activity in the biological cost associated with the production of AmpC β-Lactamases in Pseudomonas aeruginosa. Microbiology Spectrum., 10(5), e02700-22. DOI: org/10.1128/spectrum.02700-22.
Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D. & Plésiat P. (2015). Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrobial agents and chemotherapy., 59(10), 6248-6255. DOI: org/10.1128/aac.00825-15.
Betsy, T. & Keogh, J. (2005). " Microbiology demystified". The McGraw-Hill Companies, Inc., New York. DOI: 10.1036/0071446508.
Bottalico, L., Charitos, I, A., Potenza, M. A., Montagnani, M. & Santacroce, L.( 2022). The war against bacteria, from the past to present and beyond. Expert review. anti-infective therapy.DOI: org/10.1080/14 787 21 0.2 02 2.2 0 13809.
Boyd, S, E., Livermore, D, M., Hooper, D. C. & Hope, W. W. (2020). Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrobial Agents. Chemotherapy, 64(10), 1110-1128. DOI: org/10.1128/AAC.00397-20.
Brüssow, H. (2017). Infection therapy: the problem of drug resistance–and possible solutions. Microbial biotechnology. 10(5)1041-1046. DOI: org/10.1111/1751-7915.12777.
Bush ,K. (2013). The ABCD's of β-lactamase Nomenclature. J Infect Chemother., 19, 549-559. DOI: org/10.1007/s10156-013-0640-7.
Bush & Bradford. (2016). β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor perspectives in medicine, 6(8), 1-22. DOI: org/10.1101/cshperspect.a025247.
Bush &Bradford. (2019). Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol., 17 ,295–306. DOI: org/ 10.1038/s41579-019-0159-8.
Bush,. (2018). Past and present perspectives on β-lactamases. Antimicrob Agents Chemother ., 62, e01076-18. DOI: org/10.1128/AAC.01076-18.
Carcione, D., Siracusa, C., Sulejmani, A., Leoni, V. & Intra, J. (2021). Old and New Beta-Lactamase Inhibitors: Molecular Structure, Mechanism of Action, and Clinical Use. Antibiotics, 10(8), 995. DOI: org/10.3390/antibiotics10080995.
Castanheira, M., Simner, P. J. & Bradford, P. A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-antimicrobial resistance, 3(3), 1-21. DOI: org/10.1093/jacamr/dlab092.
CDC, (2013). Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention, Atlanta, GA.
Chen, W. P. & Kuo, T. T. (1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic acids research., 21(9), 2260. DOI: org/10.1093/nar/21.9.2260.
CLSI. (2021). Performance standards for antimicrobial susceptibility testing, M100, 31st ed. Clinical and Laboratory Standards Institute, Wayne, PA.
Codjoe, F, S. & Donkor, E, S. (2018). Carbapenem resistance: a review. Medical Sciences, 6(1), 1. DOI: org/10.3390/medsci6010001.
de Lipthay, J, R., Enzinger, C., Johnsen, K., Aamand, J. & Sørensen, S. J. (2004). Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biology and Biochemistry, 36(10), 1607-1614. DOI: org/10.1016/j.soilbio.2004.03.011.
Gazin, M., Paasch, F., Goossens, H. & Malhotra-Kumar, S. (2012). Current trends in culture-based and molecular detection of extended-spectrum-β-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J. clinical microbiology., 50(4), 1140-1146. DOI: org/10.1128/JCM.06852-11.
Hong, D, J., Bae, I,K., Jang, I, H., Jeong, S, H., Kang, H,K. & Lee, K. (2015). Epidemiology and characteristics of metallo-beta-lactamase-producing Pseudomonas aeruginosa. Infect. Chemother., 47, 81–97. DOI: org/10.3947/ic.2015 .47.2.81.
Hong, J, S., Yoon, E, J., Lee, H., Jeong, S, H. & Lee, K. (2016). Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying bla IMP-6 and emergence of bla GES-24 and bla IMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother., 60, 7216-7223. DOI: 10.1128/AAC.01601-16.
Hosu, M,C., Vasaikar, S, D., Okuthe, G, E. & Apalata, T. (2021). Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Scientific reports, 11(1), 1-8. DOI: org/10.1038/s41598-021-86570-y.
Jagad, B, P. & Vakanee, A. (2017). Comparison of three different methods to detect the production of β-lactamase enzyme by Staphylococci. Int J Biomedical Advance Research., 8(1), 01-03. DOI: https://dx.doi.org/10.7439/ijbar.
Levinson W. (2016). "Medical Microbiology and Immunology" . 14th. McGraw Hill Education. USA , p. 821.
Meletis, G. & Bagkeri, M. (2013). Pseudomonas aueroginosa : Multi -Drug- Resistance Development and Treatment options, Infection Control, Dr. Silpi Basak (Ed.), InTech. DOI: org/10.5772/55616.
Moore, L, S, P., Cunningham, J. & Donaldson, H. (2016). A clinical approach to managing Pseudomonas aeruginosa infections. British J. Hospital Medicine., 77(4), 50-54. DOI: org/10.12968/hmed.2016.77.4.C50.
Procop, G., Church, D., Hall, G., Janda, W., Koneman, E., Schreckenberger, P. & Woods G. (2017). " Koneman's Color Atlas and Textbook of Diagnostic". Philadelphia: Wolters Kluwer.
Quale, J., Bratu, S., Gupta, J. & Landman, D. (2006). Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother., 50, 1633–1641. DOI: org/10.1128/AAC.50.5.1633-1641.2006.
Rada, A, M., Correa, A., Restrepo, E. & Capataz, C. (2022). Escherichia coli ST471 Producing VIM-4 Metallo-β-Lactamase in Colombia. Microbiol Drug Resistance, 28(3), 288-292. DOI: org/10.1089/mdr.2021.0031.
Rajaee Behbahani, M., Keshavarzi, A., Pirbonyeh, N., Javanmardi, F., Khoob, F. & Emami, A. (2019). Plasmid-related β-lactamase genes in Pseudomonas aeruginosa isolates: a molecular study in burn patients. J Med Microbiol., 68(12), 1740-1746. DOI: 10.1099/jmm.0.001105.
Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D. & Kamal, M. A. (2015). Prevalence of multidrug resistant and extended spectrum beta-lactamase producing Pseudomonas aeruginosa in a tertiary care hospital. Saudi journal of biological sciences, 22(1), 62-64. DOI: org/10.1016/j.sjbs.2014.06.001.
Sridhar, R. P. N. (2015). Extended Spectrum Betalactamases- A Comprehensive Review.
Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., Wang, S., Grys, T. E., Haydel, S. E. & Tao, N. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795–1805. DOI: org/10.7150/thno.19217.
Tran, H. A., Vu, T. N. B., Trinh, S. T., Tran, D. L., Pham, H. M., Ngo, T. H. H. & van Doorn, H. R. ( 2021). Resistance mechanisms and genetic relatedness among carbapenem-resistant Pseudomonas aeruginosa isolates from three major hospitals in Hanoi, Vietnam (2011-15). JAC-antimicrobial resistance, 3(3), 1-9. DOI: org/10.1093/jacamr/dlab103.
Uyanga, F. Z., Ekundayo, E. O., Nwankwo, E. O. & Inimfon, A. I. (2019). Evaluation of CHROM agar ESBL and Double Disk Synergy Test (DDST) for Screening of Extended Spectrum Beta-lactamase Producing Uropathogens in South-South Nigeria. J Advances. Microbiol., 17(4),1-11. DOI: org/10.9734/jamb/2019/v17i430150.
Vázquez-Ucha, J. C., Rodríguez, D., Lasarte-Monterrubio, C., Lence, E., Arca-Suarez, J., Maneiro, M. & Beceiro, A. (2021). 6-Halopyridylmethylidene Penicillin-Based Sulfones Efficiently Inactivate the Natural Resistance of Pseudomonas aeruginosa to β-Lactam Antibiotics. J Med Chemistry., 64(9), 6310-6328. DOI: org/10.1021/acs.jmedchem.1c00369.
WHO, (2017). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization, Geneva, Switzerland.
Winokur, P, L., Canton, R., Casellas, J, M. & Legakis, N. (2001). Variations in the performance of strains expressing an extended spectrum β-Lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clinical Infections Diseases, 32(2), 94-103. DOI: org/10.1086/320182.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)