Isolation and molecular identification of polyphenol oxidase and associated enzyme production from Bacillus spp.
##plugins.themes.bootstrap3.article.main##
Abstract
Polyphenol oxidase (PPO) causes browning in food by converting phenolics to quinone, rendering unwanted organoleptic and nutritional changes. As a result, it represents a major problem in the food industry which must be addressed to reduce food waste and maximize food quality and shelf life despite PPOs importance in various industrial processes. The present study aimed to isolate Bacillus sp., evaluate their PPO production and related enzymes, and identify them through 16S rRNA sequencing. The selected strains isolated from soil were induced, and the cultures were grown OD600 of 1.0 (1x108 CFU) for evaluation. The study identified various types of Bacillus sp. as the source of PPO, tyrosinase and catecholase production. The data revealed that the strains Bacillus cereus, Bacillus albus, Bacillus subtilis, Bacillus thuringenesis and Bacillus tropicus exhibited PPO, tyrosinase and catecholase enzyme production with a maximum of 104.2 IU/ml, 68.61 IU/ml and 61.59 IU/ml respectively. Enzyme activity differed between organisms and substrate activities, which must be standardized. Despite the importance of PPO and related enzymes to browning reactions and food processing, there has been limited progress in this area. Therefore, taking a different approach to provoke more concerns is probably necessary.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Polyphenol oxidase , Tyrosinase , Catecholase, Bacillus spp, Enzyme Activity, Polymerase Chain Reaction amplification, bacterial 16S rRNA gene sequencing
Alamelumangai, M., Dhanalakshmi, J., Mathumitha, M., Renganayaki, R. S. & Rajalakshmi, N. (2013). Isolation, Partial Purification and Characterization of Polyphenol Oxidase (PPO)from Musa paradisiaca. Research Journal of Engineering and Technology, 4(4), 139-142. https://doi.org/10.5958/2321-581X.2018.00051.X.
Antunes, R. S., Ferraz, D., Garcia, L. F., Thomaz, D. V., Luque, R., Lobón, G. S., Gil, E. d. S., & Lopes, F. M. (2018). Development of a polyphenol oxidase biosensor from Jenipapo fruit extract (Genipa americana L.) and determination of phenolic compounds in textile industrial effluents. Biosensors, 8(2), 47. https://doi.org/https://doi.org/10.3390/bios8020047
Babu, A. N., Jogaiah, S., Ito, S.-i., Nagaraj, A. K., & Tran, L.-S. P. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant Peroxidase and PolyPhenol Oxidase. Plant Science, 231, 62-73. https://doi.org/10.1016/j.plantsci.2014.11.006
Bay, P., & Wodard, M. G. D. (1994). Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (Eds), 1994. Bergey's Manual of Determinative Bacteriology, The Williams and Wilkins Comp. 786-788
Bayrak, S., Öztürk, C., Demir, Y., Alım, Z., & Küfrevioglu, Ö. İ. (2020). Purification of PolyPhenol Oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein and peptide letters, 27(3), 187-192. https://doi.org/10.2174/ 0929866526666 191002142301
Bodelier, P.L.E. & Dedysh S.N. (2013) Microbiology of wetlands. Frontiers in. Microbiology. 4, 79. doi: 10.3389/fmicb.2013.00079
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976. 9999
Can, Z., Dincer, B., Sahin, H., Baltas, N., Yildiz, O., & Kolayli, S. (2014). Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey. Journal of enzyme inhibition and medicinal chemistry, 29(6), 829-835. https://doi.org/ 10.3109/ 14756366.2013. 858144
Chandra, P., Enespa, & Kumar, M. (2020). Contribution of microbes in the renovation of wetlands. Restoration of Wetland Ecosystem: A Trajectory towards a Sustainable Environment, Springer, Singapore. 101-124. https://doi.org/10.1007/978-981-13-7665-8_8
Dalfard, A. B., Khajeh, K., Soudi, M. R., Naderi-Manesh, H., Ranjbar, B., & Sajedi, R. H. (2006). Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme and microbial technology, 39(7), 1409-1416. https://doi.org/10.1016/j.enzmictec.2006.03.029
Dana, M., Bakhshi Khaniki, G., Mokhtarieh, A. A., & Davarpanah, S. J. (2017). Biotechnological and industrial applications of laccase: A review. Journal of Applied Biotechnology Reports, 4(4), 675-679. https://doi.org/10.1016/j.biotechadv.2006.04.003
Dewi, R. R., Hassan, L., Daud, H. M., Matori, M. F., Nordin, F., Ahmad, N. I., & Zakaria, Z. (2022). Prevalence and antimicrobial resistance of Escherichia coli, Salmonella and Vibrio derived from farm-raised Red Hybrid Tilapia (Oreochromis spp.) and Asian Sea Bass (Lates calcarifer, Bloch 1970) on the west coast of Peninsular Malaysia. Antibiotics, 11(2), 136. PMID: 35203739; PMCID: PMC8868497
Eid, K., Fares, K., Matta, R., El-Hayek, E., & Abou-Khalil, R. (2023). Apple waste management: a study on PolyPhenol Oxidase activity. Spectroscopy Letters, 56(5), 263-272. https://doi.org/https://doi.org/10.1080/ 0038 7010.2023. 2206483
El-Bayoumi, M. A. & Frieden, E. (1957). A Spectrophotometric method for the determination of the Catecholase Activity of Tyrosinase and Some of its Applications1. Journal of the American Chemical Society, 79(18), 4854-4858. https://doi.org/https://doi.org/10.1021/ja01575a009
Faccio, G., Kruus, K., Saloheimo, M., & Thöny-Meyer, L. (2012). Bacterial tyrosinases and their applications. Process Biochemistry, 47(12), 1749-1760. https://doi.org/10.1016/j.procbio.2012.08.018
Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461-2470. doi: 10.1128/AEM.02272-07. Epub 2008 Feb 22. PMID: 18296538; PMCID: PMC2293150.
Fu, L., Xie, R., Ma, D., Zhang, M., & Liu, L. (2023). Variations in soil microbial community structure and extracellular enzymatic activities along a forest–wetland ecotone in high‐latitude permafrost regions. Ecology and Evolution, 13(6), e10205. https://doi.org/https://doi.org/10.1002/ece3.10205
Gu, Y., Wang, P., & Kong, C. (2009). Urease, invertase, dehydrogenase and PolyPhenol Oxidase activities in paddy soil influenced by allelopathic rice variety. European Journal of Soil Biology, 45(5-6), 436-441 https://doi.org/10.1016/j.ejsobi.2009.06.003
Gurunathan, R., Huang, B., Ponnusamy, V. K., Hwang, J.-S., & Dahms, H.-U. (2021). Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Scientific Reports, 11(1), 12007. https://doi.org/https://doi.org/10.1038/s41598-021-90375-4
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appied Environmental Microbiology 2000 Jun;66(6):2627-30. doi: 10.1128/AEM.66.6.2627-2630.2000. PMID: 10831447; PMCID: PMC110590.
Hengstmann, U., Chin, K.-J., Janssen, P. H., & Liesack, W. (1999). Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Applied and Environmental Microbiology, 65(11), 5050-5058. https://doi.org/10.1128/AEM.65.11.5050-5058.1999
Herter, S., Schmidt, M., Thompson, M. L., Mikolasch, A., & Schauer, F. (2011). A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum. Applied Microbiology and Biotechnology, 90, 1037-1049.
doi: 10.1007/s00253-011-3093-x. Epub 2011 Feb 16. PMID: 21327414
Huq, A., Haley, B. J., Taviani, E., Chen, A., Hasan, N. A., & Colwell, R. R. (2012). Detection, isolation, and identification of Vibrio cholerae from the environment. Current Protocols in Microbiology, 26(1), 6A. 5.1-6A. 5.51. https://doi.org/10.1002/9780471729259.mc06a05s26
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761-2764. https://doi.org/10.1128/JCM.01228-07
Jiang, S., & Penner, M. H. (2022). The Effect of p-Coumaric Acid on Browning Inhibition in Potato Polyphenol Oxidase-Catalyzed Reaction Mixtures. Foods, 11(4), 577. https://doi.org/https://doi.org/10.3390/foods11040577
Jukanti, A., & Jukanti, A. (2017). Polyphenol oxidase (s): importance in food industry. Polyphenol Oxidases (PPOs) in Plants, 93-106. Springer, https://doi.org/10.1007/978-981-10-5747-2_6
Kamali, M., Shabanpour, B., Pourashouri, P., & Kordjazi, M. (2023). Effect of chitosan-coated Ulva intestinalis sulfated polysaccharide nanoliposome on melanosis and quality of Pacific white shrimp during ice storage. International Journal of Biological Macromolecules, 230, 123275. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.123275
Khan, S., Awadhiya, P., Patil, S., & Banerjee, T. (2017). Avermectin production by Solid State Fermentation-A novel approach. International Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 55-61 https://doi.org/http://dx.doi.org/10.22159/ijpps.2017v9i10.20470
Kieleczawa J, Mazaika E. (2010) Optimization of protocol for sequencing of difficult templates. J Biomol Tech. 21(2):97-102. PMID: 20592873; PMCID: PMC2884315.
Lacki, K., & Duvnjak, Z. (1998). Decrease of phenolic content in canola meal using a PolyPhenol Oxidase preparation from Trametes versicolor: Effect of meal saccharification. Biotechnology Techniques, 12(1), 31-34. https://doi.org/https://doi.org/10.1023/A:1008847324408
Lee, P. Y., Costumbrado, J., Hsu, C.-Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments)(62), e3923. https://doi.org/10.3791/3923
Lee, S., & Chappell, J. (2008). Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiology, 147(3), 1017-1033. https://doi.org/10.1104/pp.108.115824
Lever, M. A., Torti, A., Eickenbusch, P., Michaud, A. B., Šantl-Temkiv, T., & Jørgensen, B. B. (2015). A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 6, 476. https://doi.org/10.3389/fmicb.2015.00476
Limpiti, T., Amornbunchornvej, C., Intarapanich, A., Assawamakin, A., & Tongsima, S. (2014). iNJclust: iterative neighbor-joining tree clustering framework for inferring population structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(5), 903-914. https://doi.org/10.1109/TCBB.2014.2322372
Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. JoVE (Journal of Visualized Experiments)(63), e3998. https://doi.org/10.3791/3998
Łubkowska, B., Jeżewska-Frąckowiak, J., Sobolewski, I. & Skowron, P. M. (2021). Bacteriophages of thermophilic ‘Bacillus group’bacteria—A review. Microorganisms, 9(7), 1522. https://doi.org/10.3390/microorganisms9071522
Lugani, Y., Kauldhar, B. S., Kaur, N., & Sooch, B. S. (2019). Phenotypic Characterization and Synthesis of Extracellular Catecholase from a Newly Isolated Bacterium Pseudomonas sp. BSC-6. Brazilian Archives of Biology and Technology, 62. https://doi.org/https://doi.org/10.1590/1678-4324-2019180360
Macrae, A. (2000). The use of 16S rDNA methods in soil microbial ecology. Brazilian Journal of Microbiology, 31, 77-82. http://dx.doi.org/10.1590/S1517-83822000000200002
Malviya, N., Srivastava, M., Diwakar, S. K., & Mishra, S. K. (2011). Insights to sequence information of PolyPhenol Oxidase enzyme from different source organisms. Applied Biochemistry and Biotechnology, 165, 397-405. doi: 10.1007/s12010-011-9259-2. Epub 2011 Apr 27. PMID: 21523355.
Martin, J., Berg, J., Fischer, A., Jukanti, A., Kephart, K., Kushnak, G., Nash, D., & Bruckner, P. (2005). Divergent selection for Polyphenol oxidase and its influence on agronomic, milling, bread, and Chinese raw noodle quality traits. Crop Science, 45(1), 85-91. https://doi.org/https://doi.org/10.2135/cropsci2005.0085a
Mathur, R., Navya, P., Basavaraj, K., & Murthy, P. S. (2015). Bioprocess of robusta cherry coffee with PolyPhenol Oxidase and quality enhancement. European Food Research and Technology, 240, 319-325. https://doi.org/10.1007/s00217-014-2331-8
Mayer, A. M. (2006). PolyPhenol Oxidases in plants and fungi: going places? A review. Phytochemistry, 67(21), 2318-2331. https://doi.org/10.1016/j.phytochem.20 06.08.006
McMahon, A. M., Doyle, E. M., Brooks, S., & O’Connor, K. E. (2007). Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme and Microbial Technology, 40(5), 1435-1441. http://dx.doi.org/10.1016%2Fj.enzmictec. 2006.10.020
Misnawi, Jinap, S., Jamilah, B., & Nazamid, S. (2003). Effects of incubation and PolyPhenol Oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International journal of Food Science & Technology, 38(3), 285-295. https://doi.org/https://doi.org/10.1046/j.1365-2621.2003.00674.x
Mo, Y., Wan, R. & Zhang, Q. (2012). Application of reverse transcription-PCR and real-time PCR in nanotoxicity research. Nanotoxicity: Methods and Protocols, 99-112. https://doi.org/10.1007/978-1-62703-002-1_7
Mohammad, B. T., Al Daghistani, H. I., Jaouani, A., Abdel-Latif, S., & Kennes, C. (2017). Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. International Journal of Microbiology, 2017. https://doi.org/10.1155/2017/6943952
Mohammad, F. G. & Alireza, T. (2007). Isolation and characterization of PolyPhenol Oxidase-and Peroxidase-producing Bacillus strains from fully fermented tea (Camellia sinensis). World Journal of Microbiology and Biotechnology, 23, 1327-1332. https://doi.org/https://doi.org/10.3390/foods13040545
Moon, K. M., Kwon, E.-B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 2754. https://doi.org/10.3390/molecules25122754
Mubashshir, M., Ahmad, N., Sköld, H. N. & Ovais, M. (2023). An exclusive review of melatonin effects on mammalian melanocytes and melanoma. Experimental Dermatology, 32(4), 324-330. https://doi.org/10.1111/exd.14715
Mukherjee, S., Basak, B., Bhunia, B., Dey, A., & Mondal, B. (2013). Potential use of PolyPhenol Oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Reviews in Environmental Science and Bio/Technology, 12, 61-73. https://doi.org/10.1007/s11157-012-
Murakami, H., Borde, V., Nicolas, A. & Keeney, S. (2009). Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Meiosis: Volume 1, Molecular and Genetic Methods, 117-142. https://doi.org/10.1007/978-1-59745-527-5_9
Nezhad, S. K., Modheji, E. & Zolgharnein, H. (2012). Polymorphism analysis of mitochondrial DNA control region of hawksbill turtles (Eretmochelys imbricata) in the Persian Gulf. Journal of Fisheries and Aquatic Science, 7(5), 339. https://doi.org/10.1007/978-1-59745-527-5_9
Nikolaivits, E., Valmas, A., Dedes, G., Topakas, E., & Dimarogona, M. (2021). Considerations regarding activity determinants of fungal PolyPhenol Oxidases based on mutational and structural studies. Applied and Environmental Microbiology, 87(11), e00396-00321. https://doi.org/10.1128/AEM
O’Donnell, M. M., Hegarty, J. W., Healy, B., Schulz, S., Walsh, C. J., Hill, C., Ross, R. P., Rea, M. C., Farquhar, R., & Chesnel, L. (2022). Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities. Scientific Reports, 12(1), 9283. https://doi.org/10.1038/s41598-022-13248-4
Padró, M. D. A., Caboni, E., Morin, K. A. S., Mercado, M. A. M., & Olalde-Portugal, V. (2021). Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ, 9, e10984. https://doi.org/10.7717/peerj.10984
Panadare, D., & Rathod, V. K. (2018). Extraction and purification of PolyPhenol Oxidase: A review. Biocatalysis and Agricultural Biotechnology, 14, 431-437. https://doi.org/10.1016/j
Panis, F., & Rompel, A. (2022). The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. Environmental Science & Technology, 56(17), 11952-11968. https://doi.org/https://doi.org/10.1021/acs.est.2c03770
Qian, J., Chen, S., Huo, S., Dai, C., Zhou, C., & Ma, H. (2021). Impact of pulsed magnetic field treatment on enzymatic inactivation and quality of cloudy apple juice. Journal of Food Science and Technology, 58, 2982-2991. https://doi.org/10.1007/s13197-020-04801-y
Rao, A. R., Sindhuja, H., Dharmesh, S. M., Sankar, K. U., Sarada, R., & Ravishankar, G. A. (2013). Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry, 61(16), 3842-3851. https://doi.org/10.1021/jf304609j.
Rashid, M. T., Liu, K., Jatoi, M. A., Safdar, B., Lv, D., & Wei, D. (2022). Developing ultrasound-assisted hot-air and infrared drying technology for sweet potatoes. Ultrasonics Sonochemistry, 86, 106047. https://doi.org/https://doi.org/10.1016/j.ultsonch.2022.106047
Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S. & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16. https://doi.org/10.17113/ftb.56.01.18.5491
Raymundo-Pereira, P. A., Silva, T. A., Caetano, F. R., Ribovski, L., Zapp, E., Brondani, D., Bergamini, M. F., Marcolino Jr, L. H., Banks, C. E., & Oliveira Jr, O. N. (2020). PolyPhenol Oxidase-based electrochemical biosensors: A review. Analytica Chimica Acta, 1139, 198-221. https://doi.org/10.1016/j.aca.2020.07.055
Sacchi, C. T., Whitney, A. M., Mayer, L. W., Morey, R., Steigerwalt, A., Boras, A., Weyant, R. S., & Popovic, T. (2002). Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerging infectious Diseases, 8(10), 1117. https://doi.org/10.3201/eid0810.020391
Salas-Ovilla, R., Gálvez-López, D., Vázquez-Ovando, A., Salvador-Figueroa, M., & Rosas-Quijano, R. (2019). Isolation and identification of marine strains of Stenotrophomona maltophilia with high chitinolytic activity. PeerJ, 7. https://doi.org/10.7717/peerj.6102
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820-897. https://doi.org/https://doi.org/10.1016/j.jff.2015.06.018
Singh, A., Singh, P. K., Wang, W., & Shrivastava, A. K. (2020). Microbes Biology: Microbes in Wetland and Bioprospection of Microbes. Restoration of Wetland Ecosystem: A Trajectory towards a Sustainable Environment, Springer Nature Singapore 87-99. https://doi.org/10.1007/978-981-13-7665-8_7
Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42(3), 391-404. https://doi.org/10.1016/j.soilbio.2009.10.014
Solano, F., Garcia, E., Perez, D. E., & Sanchez-Amat, A. (1997). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Applied and environmental microbiology, 63(9), 3499-3506. https://doi.org/10.1128/aem.63.9.3499-3506.1997
Soliman, I. A., Hasanien, Y. A., Zaki, A. G., Shawky, H. A., & Nassrallah, A. A. (2022). Irradiation impact on biological activities of Anthraquinone pigment produced from Talaromyces purpureogenus and its evaluation, characterization and application in beef burger as natural preservative. BMC Microbiology, 22(1), 325. https://doi.org/https://doi.org/10.1186/s12866-022-02734-4
Sridhar, J., Parit, R., Boopalakrishnan, G., Rexliene, M. J., Praveen, R., & Viswananathan, B. (2022). Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. Case Studies in Chemical and Environmental Engineering, 6, 100241. https://doi.org/10.1016/j.cscee.2022.100241
Sullivan, M. L. (2015). Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism. Frontiers in Plant Science, 5, 783. https://doi.org/10.3389/fpls.2014.00783
Sura, N., Hashim, A. & Abood, W. (2022). Biodegradation of some environmental pollutants by laccase produced from trichoderma harzianum using solid state fermentation. Iraqi Journal of Agricultural Sciences, 53(3), 522-533. https://doi.org/https://doi.org/10.36103/ijas.v53i3.1560
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
Tang, M. g., Zhang, S., Xiong, L. g., Zhou, J. h., Huang, J. a., Zhao, A. q., Liu, Z. h., & Liu, A. l. (2023). A comprehensive review of PolyPhenol Oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/https://doi.org/10.1111/1541-4337.131 46
Tang, S., Ma, Q., Luo, J., Xie, Y., Pan, W., Zheng, N., Liu, M., & Wu, L. (2021). The inhibition effect of tea polyphenols on soil nitrification is greater than denitrification in tea garden soil. Science of the Total Environment, 778, 146328 doi: 10.1016/j.scitotenv.2021.146328. Epub 2021 Mar 9. PMID: 33714837.
Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S., & Montemurro, C. (2017). PolyPhenol Oxidases in crops: Biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2), 377. https://doi.org/10.3390/ijms18020377
Tosar, J., Branas, G., & Laíz, J. (2010). Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosensors and Bioelectronics, 26(4), 1205-1217. https://doi.org/https://doi.org/10.1016/j.bios.2010.08.053
Ulucay, O., Gormez, A., & Ozic, C. (2022). Identification, characterization and hydrolase producing performance of thermophilic bacteria: geothermal hot springs in the Eastern and Southeastern Anatolia Regions of Turkey. Antonie van Leeuwenhoek, 1-18. https://doi.org/10.1007/s10482-021-01678-5
Varghese, P. K., Abu-Asab, M., Dimitriadis, E. K., Dolinska, M. B., Morcos, G. P., & Sergeev, Y. V. (2021). Tyrosinase Nanoparticles: Understanding the Melanogenesis Pathway by Isolating the Products of Tyrosinase Enzymatic Reaction. International Journal of Molecular Sciences, 22(2), 734. https://doi.org/10.3390/ijms22020734
Wang, A., & Ash, G. J. (2015). Whole genome phylogeny of Bacillus by feature frequency profiles (FFP). Scientific Reports, 5(1), 13644. https://doi.org/https://doi.org/10.1038/srep13644
Whitaker, J. (1994). Effect of temperature on rates of enzyme-catalyzed reactions. Principles of Enzymology for the Food Sciences, 301-328. https://doi.org/https://doi.org/10.1021/acs.biochem.5b01094
Wu, Z., Huang, Y., Li, Y., Dong, J., Liu, X., & Li, C. (2019). Biocontrol of Rhizoctonia solani via induction of the defense mechanism and antimicrobial compounds produced by Bacillus subtilis SL-44 on pepper (Capsicum annuum L.). Frontiers in Microbiology, 10, 2676. https://doi.org/https://doi.org/10.3389/fmicb.2019.02676
Xiong, Z. R., Cobo, M., Whittal, R. M., Snyder, A. B., & Worobo, R. W. (2022). Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. Plos one, 17(4), e0266470. https://doi.org/https://doi.org/10.1371/journal.pone.0266470
Yan, Z.-F., Yuan, S., Qin, Q., & Wu, J. (2022). Enhancement of rice protein hydrolysate quality using a novel dual enzyme system. LWT, 158, 113110. https://doi.org/https://doi.org/10.1016/j.lwt.2022.113110
Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S. & Hassan, M. N. (2020). Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One, 15(4), e0231348. https://doi.org/https://doi.org/10.1371/journal.pone.0231348
Zaidi, K. U., Ali, A. S., Ali, S. A. & Naaz, I. (2014). Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochemistry Research international, 2014, ID 854687, 16 pages, 2014. https://doi.org/10.1155/2014/854687
Zhu, X., Yuan, F., He, L., Guo, Z., Wang, N., Zuo, Y., Liu, J., Li, K., Wang, Y. & Sun, Y. (2022). Wetland conversion to cropland alters the microbes along soil profiles and over seasons. Catena, 214, 106282. https://doi.org/https://doi.org/10.1016/j.catena.2022.106282
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)