Zinah Mohammed Mahdi Noor Nihad Baqer Shahad Hisham Mahmood Mohammed Adil Jaffar


 Clean drinking water access is a main factor that supports general health worldwide, where important investment is made to maintain water quality. The gene sequence of 16S rRNA was applied to study bacterial phylogenesis and classification. This study
aimed to isolate new bacterial strains from wastewater environments. Thisstudy collected water samples from different
wastewater sites for Baghdad Medical City’s Hospital. The results of Vitek 2Compact were with a probability of99% for
Escherichia coli isolates .The bacterial isolates were identified using Polymerase chain reaction (PCR) based on the universal
diagnostic gene 16SrRNA, and the PCR product was obtained with a molecular weight of 1250bp. The PCR productsequencing
showed 166 isolates of E. coli different from the isolates registered in the NCBI database of E. coli after alignment between them.
The present study reported 16 Iraqi isolates in NCBI with an accession number: OM032663.1; OM 032664.1; OM294659.2;
ON724178.1; ON724264.1; ON724331.1; ON725076.1; ON725091.1; ON725139.1; ON725141.1; ON739200.1; ON739201.1;
ON739207.1; ON739208.1; ON739209.1; ON739211.1. The identity was then observed(96-100%) with strains in Gene Bank.
There were many different sequence position substitutions (transition, deletion, transversionfor the registered local isolates when
conducting multiple alignments and comparing themwith the isolates in the Gene Bank. According to the phylogenetic tree
building by joining-the neighbor method, the local Iraqi isolates clustered into sub-descents. Moreover, local isolates of E.coli
appeared more convergent to Saudi Arabia isolates (KY780347.1). This may be due to the geographical proximity of the two countries to the same Arab Gulf region .The present study identified 16 isolates of E. coli from the Iraqi aquatic environment (medical wastewater). The novelty of this study was represented to monitoring the evolution of E. coli in medical wastewater. 




Antibiotics, Escherichia coli, Genetic detection, Multi-Drug Resistance, Tigris River

Chu, X. L., Zhang, B. W., Zhang, Q. G., Zhu, B. R., Lin, K. & Zhang, D. Y. (2018). Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC evolutionary biology, 18(1), 1-8. https://doi.org/10.1186/s12862-018-1252-8
Fattahi, F., Mirvaghefi, A., Farahmand, H., Rafiee, G. & Abdollahi, A. (2013). Development of 16S rRNA targeted PCR methods for the detection of Escherichia coli in Rainbow trout (Oncorhynchus mykiss). Iranian Journal of Pathology, 8(1), 36-44. https://ijp.iranpath.org/article_8330.html
Fewtrell, L. & Bartram, J. (Eds.). (2001). Water quality: guidelines, standards & health. IWA publishing.
Humphreys, I. R. (2019). Characterizing the Accuracy of Phylogenetic Analyses that Leverage 16S rRNA Sequencing Data. Master science.Oregon State University.
Janda, J. M. & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761-2764. https://doi.org/10.1128/JCM.01228-07
Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T. & Ishii, S. (2017). Environmental Escherichia coli: ecology and public health implications—a review. Journal of Applied Microbiology, 123(3), 570-581. https://doi.org/10.1111/ jam.13468
Mahdi, Z. M., Mahmood, S. H.,& Baqer, N. N. (2023). Detection of resistance genes (gyrA, qepA, drf1, drf17) for E. coli in Iraqi aquatic environment. Baghdad Science Journal. https://dx.doi.org/1 0.21123/bsj. 2023.7782
Magray, M. S., Kumar, A., Rawat, A. K. & Srivastava, S. (2011). Identification of Escherichia coli through analysis of 16S rRNA and 16S-23S rRNA internal transcribed spacer region sequences. Bioinformation, 6(10), 370–371. https://doi. org/10.6026/97320630006370
Miller, C. S., Handley, K. M., Wrighton, K. C., Frischkorn, K. R., Thomas, B. C., & Banfield, J. F. (2013). Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PloS one, 8(2), e56018. doi: 10.1093/molbev/msr121
Nakano, Y., Domon, Y. & Yamagishi, K. (2023). Phylogenetic trees of closely related bacterial species and subspecies based on frequencies of short nucleotide sequences. Plos one, 18(4), e0268847. https://doi.org/10.1371/ journal.pone. 026 8847
Patel, J. B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, 6(4), 313-321. DOI: 10.1054/modi. 2001.29158
Sacchi, C. T., Whitney, A. M., Reeves, M. W., Mayer, L. W. & Popovic, T. (2002). Sequence diversity of Neisseria meningitidis 16S rRNA genes and use of 16S rRNA gene sequencing as a molecular subtyping tool. Journal of Clinical Microbiology, 40(12),4520-4527.https://doi.org/10.112 8/jcm.40.12. 4520-4527. 2002
Srinivasan, R., Karaoz, U., Volegova, M., MacKichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L. & Lynch, S. V. (2015). Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one, 10(2), e0117617. https://doi.org/10.1371/ journal.pone. 0117617
Somerville, T. F., Corless, C. E., Sueke, H., Neal, T., & Kaye, S. B. (2020). 16S Ribosomal RNA PCR Versus Conventional Diagnostic Culture in the Investigation of Suspected Bacterial Keratitis. Translational vision science & technology, 9(13), 2. https://doi.org/10.1167/tvst.9.13.2
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739. https://doi.org/ 10.1093/molbev/msr121
Research Articles

How to Cite

Phylogenetic monitoring of Escherichia coli in medical wastewater/Baghdad City. (2023). Journal of Applied and Natural Science, 15(4), 1691-1700. https://doi.org/10.31018/jans.v15i4.5159