##plugins.themes.bootstrap3.article.main##

Seema Talukdar Hari Prasad Sarma

Abstract

The textile industry is one of the leading causes of major environmental problems worldwide. The textile dye effluents hold diverse kinds of dyes along with other contaminants. Various environmental legislations have been formulated and obligate the textile industries to treat the effluents prior to discharge into water bodies.  The present study aimed to evaluate the efficacy of removing two dyes, Congo red and Methylene blue, present in raw textile effluent by employing the powdered leaves of the Burflower (Neolamarckia cadamba) tree as adsorbent. The experiment was performed in a laboratory scale. The surface characterization of the adsorbent was carried out using Brunauer-Emmett-Teller (BET) surface area analysis, CHN elemental analyzer, FTIR and SEM-EDX analyses. The effluent was characterised before and after the biosorption process to check the efficiency of the process on the various parameters of the effluent. The values of the examined parameters were found to be decreased after the adsorption process. The removal percentages of the two dyes (Congo red = 76.35% and Methylene blue = 85.8%) using the adsorbent were also estimated by batch experiment studies. The findings of this study infer that the adsorbent as mentioned above, can be used to treat dye effluents.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biosorption, Congo red, Effluent, Methylene blue, Removal efficiency

References
Adegoke, K. A. & Bello, O. S. (2015). Dye sequestration using agricultural wastes as adsorbents. Water Rresources and Industry, 12, 8-24. https://doi.org/10.1016/j.wri.2015.09.002
Anonymous (1992). The Wealth of India, Raw materials, Publication and Information Directorate, CSRI, New Delhi, Vol-I, 305-308.
APHA (2023). eds. Standard Methods for the Examination of Water and Wastewater. 24th ed. Washington DC: APHA Press.
Batta, K, & Rajput, H. (2021). Chemical and Phytochemical properties of Fresh and Dry Kadam (Neolamarckia cadamba) Leaves. Chem. Sci. Rev. Lett, 10(39), 330-335.
da Silva Alves, D. C., Healy, B., Pinto, L. A. D. A., Cadaval Jr, T. R. S. A. & Breslin, C. B. (2021). Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules, 26(3), 594. https://doi.org/10.3390/molecules26030594
Gunasekhararan, R., Divyakant, A. & Senthilkumar, K. L. (2006). Anthelmintic activity of bark of Neolamarckia cadamba Roxb. Ind. J. Nat. Prod, 22(1), 11-13.
Howlader, M. I., Morsada, Z. & Hossain, M. M. (2022). Pollutants removal from textile wastewater by biofilter. In An Innovative Role of Biofiltration in Wastewater Treatment Plants (WWTPs) 309-330. Elsevier. https://doi.org/10.1016/B978-0-12-823946-9.00025-5
Kapil, A., Koul, I. B. & Suri, O. P. (1995). Antihepatotoxic effects of chlorogenic acid from Anthocephalus cadamba. Phytotherapy research, 9(3), 189-193.   https://doi.org/10.1002/ptr.2650090307
Mane, V. S. & Babu, P. V. (2011). Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination, 273(2-3), 321-329. https://doi.org/10.1016/j.desal.2011.01.049
Mani, S. & Bharagava, R. N. (2018). Textile industry wastewater: environmental and health hazards and treatment approaches. In Recent advances in environmental management, 47-69. CRC Press.
Manzoor, K., Batool, M., Naz, F., Nazar, M. F., Hameed, B. H. & Zafar, M. N. (2022). A comprehensive review on application of plant-based bioadsorbents for Congo red removal. Biomass Conversion and Biorefinery, 1-27. https://doi.org/10.1007/s13399-022-02741-5
Markandeya, S., Shukla, S. P. & Mohan, D. (2017). Toxicity of disperse dyes and its removal from wastewater using various adsorbents: a review. Res. J. Environ. Toxicol, 11(2), 72-89.
Mosoarca, G., Vancea, C., Popa, S., Gheju, M. & Boran, S. (2020). Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Scientific reports, 10(1), 17676. https://doi.org/10.1038/s41598-020-74819-x
Murungi, P. I. & Sulaimon, A. A. (2022). Petroleum sludge treatment and disposal techniques: a review. Environmental Science and Pollution Research, 29(27), 40358-40372. https://doi.org/10.1007/s11356-022-19614-z
Ojha, A. K. & Bulasara, V. K. (2015). Adsorption characteristics of jackfruit leaf powder for the removal of Amido black 10B dye. Environmental Progress & Sustainable Energy, 34(2), 461-470. DOI 10.1002/ep.12015
Patel, H. (2018). Charcoal as an adsorbent for textile wastewater treatment. Separation Science and Technology, 53(17), 2797-2812. https://doi.org/10.1080/01496395.2018.1473880
Piaskowski, K., Świderska-Dąbrowska, R. & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371-1384.  https://doi.org/10.5740/jaoacint.18-0051
Rania Al-Tohamy, Sameh S. Ali, Fanghua Li, Kamal M. Okasha, Yehia A.-G. Mahmoud, Tamer Elsamahy, Haixin Jiao, Yinyi Fu, Jianzhong Sun, (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Sardar, M., Manna, M., Maharana, M. & Sen, S. (2021). Remediation of dyes from industrial wastewater using low-cost adsorbents. Green adsorbents to remove metals, dyes and boron from polluted water, 377-403. https://doi.org/10.1007/978-3-030-47400-3_15
Shah, K. (2014). Biodegradation of azo dye compounds. International Research Journal of Biochemistry and Biotechnology, 1(2), 5-13.
Shah, M.P., (2018). Bioremediation-Wastewater Treatment. J. Bioremediat. Biodegrad., 9: 427.
Sulyman, M., Al-Marog, S., Al-Azabi, K., Dawed, E. & Abukrain, A. (2020). Economical and eco-friendly adsorbent derived from coffee waste for efficient adsorption of methylene blue: Characterization, evaluation and optimization studies. Chemical Science International Journal, 29(10), 16-36. DOI: 10.9734/CSJI/2020/v29i1030208
Uddin, M. T., Rukanuzzaman, M., Khan, M. M. R. & Islam, M. A. (2009). Jackfruit (Artocarpus heterophyllus) leaf powder: An effective adsorbent for removal of methylene blue from aqueous solutions.
Vishnoi, N., Dixit, S. & Gupta, Y. (2020). Biodegradation of textile dye effluent through Indigenous bacteria. G-Journal of Environmental Science and Technology, 7(5), 60-65.
Wen, C. Q. (2017). Removal of dye from wastewater of textile industry using banana stem-derived biochar/Wen Chang Qi (Doctoral dissertation, University of Malaya).
Yaseen, D. A. & Scholz, M. (2017). Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions. Environmental Science and Pollution Research, 24, 16031-16040. https://doi.org/10.1007/s11356-017-9245-5
Section
Research Articles

How to Cite

Treatment of textile effluent by using Burflower tree (Neolamarckia cadamba) leaf powder: Batch biosorption study. (2023). Journal of Applied and Natural Science, 15(4), 1660-1666. https://doi.org/10.31018/jans.v15i4.5148