A. Ammaiyappan V. Geethalakshmi K. Bhuvaneswari M.K. Kalarani N. Thavaprakaash M. Prahadeeswaran


Climate change is likely to affect agricultural production in many parts of the world. Sorghum is the stable food crop in semiarid areas, and climate change has significant adverse effects on sorghum yields. The optimum time of sowing is one of the important technologies that allow the crop to better utilise natural resources by the crop to maximise productivity. For optimizing the sowing time, the field investigation was carried out in Tamil Nadu Agricultural University, Coimbatore, under summer irrigated conditions in 2022. The experiment was laid out in a split-plot design with three replications. The main plot consists of five dates of sowing and the subplot includes different nitrogen levels. The results revealed that advanced sowing (first fortnight of April) reduced the yield by 13.73% and delayed sowing (second fortnight of May) recorded the maximum yield (4230.3kg ha-1) with higher phyllochron values. GDD manifested a significant negative relationship with a high correlation coefficient (r) value of -0.98** (p = 0.01) for days to anthesis, -0.98** (p = 0.01) for days to physiological maturity and -0.88* (p = 0.05) for phyllochron. Average temperature exhibited a significant negative correlation with days to anthesis (-0.75*), physiological maturity (-0.97**) and phyllochron (-0.89*). The best-fit regression model showed that a GDD-based model could better predict the phenology of sorghum compared to an average temperature-based model. The study indicated that understanding sorghum's phenological response and productivity level under varied dates of sowing and the nitrogen levels in semiarid environments can help determine the appropriate sowing time and optimum nitrogen level for achieving better yield in summer-irrigated sorghum.





Growing degree days (GDD), Phenological response, Regression model, Sowing windows, Thermal indices

Andhale, R. P., Dhonde, M. B., Dhage, A. B., Rathod, B. G., Patil, S. R., Patil, V. S. & Tambe, A. D. (2017). Long-term Effect of Integrated Nutrient Management on Productivity and Soil fertility In Sorghum (Sorghum bicolor L.)-Wheat (Triticum aestivum L.) Cropping System. Journal of Agriculture Research and Technology, 42(3), 191-196.
Bankole, J. A. (2022). Growth and Yield of Sorghum Cultivars as Influenced by Population Density of Components of Soya Bean (Doctoral dissertation, Kwara State University (Nigeria)).
Bughdady, A. M. M. (2016). Response of some sorghum (Sorghum bicolor L.) cultivars to sowing dates and phosphorus fertilization under New Valley conditions. Middle East Journal of Applied Sciences, 6(4), 1150-1159.
Chakravarthy, K. S. & Jagannathan, R. (2013). Phyllochron in Five Maize Hybrids (Zea mays L.) at Different Nitrogen Fertilizer Levels. Madras Agricultural Journal, 100 (Special issue): 353-354.
Clerget, B., Dingkuhn, M., Gozé, E., Rattunde, H. F. W., & Ney, B. (2008). Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties. Annals of Botany, 101(4), 579-594. https://doi.org/10.1093/aob/mcm327.
Damilola, O., Alex, O. & Olumakinde, A. (2022). Effect of Sowing Dates on Growth and Yield of Grain Sorghum (Sorghum bicolor L. Moench.) in Akure, South West, Nigeria. International Journal of Food Science and Biotechnology, 7(4): 89-93. doi: 10.11648/j.ijfsb.20220704.11
Dos Santos, C. L., Abendroth, L. J., Coulter, J. A., Nafziger, E. D., Suyker, A., Yu, J., & Archontoulis, S. V. (2022). Maize leaf appearance rates: A synthesis from the United States corn belt. Frontiers in Plant Science, 13, 872738. https://doi.org/10.3389/fpls.2022.872738.
El Naim, A. M., Ibrahim, I. M., Abdel Rahman, M. E., & Ibrahim, E. A. (2012). Evaluation of some local sorghum (Sorghum bicolor L. Moench) genotypes in rain-fed. International Journal of Plant Research, 2(1), 15-20. DOI:10.5923/j. plant.20120201.03.
El-Raouf, A., El-Metwally, E. & Bahar Elddin, A. A. (2013). Performance of some grain sorghum (Sorghum bicolor (L.) Moench) genotypes under different sowing dates in EGYPT. Journal of Plant Production, 4(5), 763-772. https://dx.doi.org/10.21608/jpp.2013.73070.
Gomez, K.A., Gomez, A.A., (1984). Statistical Procedures for Agricultural Research with Emphasis on Rice. John wiley and Sors, New York. pp. 680.
Haider SA, Alam MZ, Alam MF. & Paul NK. (2003). Influence of different sowing dates on the phenology and accumulated heat units in wheat. Journal of Biological Science. 3(10), 932-939.
Hazarika, K., Goswami, K. R., Bharali, B., Kalita, P., Goswami, J., & Neog, B. (2022). Physiological performance of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes under Assam situation. Research on Crops, 23(3), 556-561. http://dx.doi.org/10.31830/2348-7542.2022.ROC-810.
Hokmalipour, S. (2011). The Study of Phyllochron and Leaf Appearance Rate in Three Cultivar of Maize (Zea mays L.) at Nitrogen Fertilizer Levels. World Applied Sciences Journal,12: 850 - 856.
Iwata, F. (1984). Heat unit concept of crop maturity. Physiological Aspects of Dryland Farming. US Gupta, ed.
Jackson ML. (1973). Soil Chemical Analysis, Prentice Hall of India. Pvt. Ltd., New Delhi, 498.
Ji, Z., Pan, Y., Zhu, X., Wang, J., & Li, Q. (2021). Prediction of crop yield using phenological information extracted from remote sensing vegetation index. Sensors, 21(4), 1406. https://doi.org/10.3390/s21041406.
Kaufman, R. C., Wilson, J. D., Bean, S. R., Presley, D. R., Blanco-Canqui, H., & Mikha, M. (2013). Effect of nitrogen fertilization and cover cropping systems on sorghum grain characteristics. Journal of agricultural and food chemistry, 61(24), 5715-5719. https://doi.org/10.1021/jf401179n.
Khaton, M. A., Sagar, A., Tajkia, J. E., Islam, M. S., Mahmud, M. S. and Hossain, A.K.M.Z. (2016). Effect of moisture stress on morphological and yield attributes of four sorghum varieties. Progressive Agriculture, 27: 265–271. https://doi.org/10.3329/pa.v27i3.30806.
Mishra, J. S., Kumar, R. & Rao, S. S. (2017). Performance of sweet sorghum (Sorghum bicolor) cultivars as a source of green fodder under varying levels of nitrogen in semiarid tropical India. Sugar Tech, 19(5), 532-538.
Naoura, G., Emendack, Y., Sawadogo, N., Djirabaye, N., Tabo, R., Laza, H. & Atchozou, E. A. (2023). Assessment of Photoperiod Sensitivity and the Effect of Sowing Date on Dry-Season Sorghum Cultivars in Southern Chad. Agronomy, 13(3), 932. https://doi.org/10.3390/agronomy13030932.
Noori, M. S. (2020). Effect of nitrogen fertilization on growth and forage yield of sorghum [Sorghum bicolor (L.) Moench.] under takhar agro-ecological conditions. Turkish Journal of Range and Forage Science, 1(2), 66-71.
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean. L. A. (1954). Estimation of available phosphorus in soils by extraction with NaHCO3, USDA Cir.939. U.S.
Ostmeyer, T. J., Bahuguna, R. N., Kirkham, M. B., Bean, S. & Jagadish, S. V. (2022). Enhancing sorghum yield through efficient use of nitrogen–challenges and opportunities. Frontiers in Plant Science, 13, 845443. https://doi.org/10.3389/fpls.2022.845443.
Pagire, G. S., Gadakh, S. R., Shinde, M. S., Dalvi, U. S., Awari, V. R., & Gadakh, S. S. (2021). Seasonal variation in sowing and its effect on ethanol and biomass yield of sweet sorghum. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-14. http://dx.doi.org/10.1080/15567036.2021.1918290.
Piper, C.S. (1966). "Soil and plant analysis, Hans." Pub. Bombay. Asian Ed:368-374.
Praveenkumar, P., Sathyamoorthy, N. K., Dheebakaran, G. A., Karthikeyan, R., Palanisamy, J., Naveen, S. A., & Sachin, S. (2023). Developing Genetic Coefficients of Sorghum Cultivars Using Gencalc and Glue Genetic Coefficient Estimators in DSSAT. Asian Research Journal of Agriculture, 16(2), 37-45. DOI: 10.9734/ARJA/2023/v16i2385.
Rai, A. K., Basak, N., Soni, P. G., Kumar, S., Sundha, P., Narjary, B, & Sharma, P. C. (2022). Bioenergy sorghum as balancing feedback loop for intensification of cropping system in salt-affected soils of the semi–arid region: Energetics, biomass quality and soil properties. European Journal of Agronomy, 134, 126452. https://doi.org/10.1016/j.eja.2021.126452.
Ruml, M. & Vulić, T. (2005). Importance of phenological observations and predictions in agriculture. Journal of Agricultural Sciences (Belgrade), 50(2), 217-225. http://dx.doi.org/10.2298/JAS0502217R.
Rutayisire, A., Mukayiranga, A., Habineza, J. C., Avosa, M., Edema, R., & Lubadde, G. (2020). Effect of low temperature stress on field performance of highland sorghum (Sorghum bicolor (L.) Moench) at flowering stages. Journal of plant breeding and crop science, 12 (1), 25-33. http://dx.doi.org/10.5897/JPBCS2019.0844.
Sankar, T., Ramanathan, S. P., Kokilavani, S., Chandrakumar, K., & Kalarani, M. K. (2023). Evaluating the seasonal accumulation of Heat units as an agroclimatic indicator on Baby corn (Zea mays L.) under different sowing windows. Journal of Applied & Natural Science, 15(1) 340 – 348. https://doi.org/10.31018/jans.v15i1.4273.
Smith, D.T., Potgieter, A.B. & Chapman, S.C. Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theor Appl Genet 134, 1845–1866 (2021). https://doi.org/10.1007/s00122-021-03864-5.
Stanford, G. & English, L. (1949). Use of the flame pho-tometer in rapid soil tests for K and Ca. https://doi.org/10.2134/agronj1949.00021962004100090012x.
Subbiah, B. V. & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science 25, 259-260.
Ungata, T., Poiba, J., Narasupalli, A., Patro, T. S. S. K., & Yesarapu, S. R. (2020). Influence of sowing windows on the productivity of small millet crops. Journal of Pharmacognosy and Phytochemistry, 9(5), 1291-1294.
Walkley, A. & Black, I.A. (1934). An Examination of the Method for Determining Soil Organic Matter and Proposed Modification of the Acid Titration Method. Soil Science, 37, 29-38.
Williams, D.A., Berglund, D.R. and Enders, G.J. (1999). Corn Growth and Management Quick Guide. North Dakota State University and University of Minnesota. NDSU, A-1173.
Research Articles

How to Cite

Phenology, phyllochron and productivity of sorghum in response to varying growing environments and nitrogen levels in the semiarid irrigated condition. (2023). Journal of Applied and Natural Science, 15(4), 1563-1571. https://doi.org/10.31018/jans.v15i4.5105