##plugins.themes.bootstrap3.article.main##

Yatheesharadhya Bylappa Anish Nag

Abstract

Guava (Psidium guajava L.) is a highly nutritious and economically important fruit. Although fruit peel is generally regarded as a waste, researchers believe that the peel of the guava is rich in bioactive constituents, even higher than the fruit's flesh. The present study aimed to estimate phenolic content (total phenolic and total flavonoid) and assess antioxidant properties of guava fruit peel (pink variety, cv Arka kiran) by 2,2-di (4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and Ferric Reducing Antioxidant Potential (FRAP) assays at five different ripening stages (stage 1 to 5). The TPC and TFC assays were performed by Folin-Ciocalteu and aluminium chloride (AlCl3) methods, respectively. The molecular docking experiment between the major phenolic of guava peel, Catechin and the spike protein of SARS-CoV-2 was performed by the Dockthor online server. Results showed that the peel had high phenolic (highest TPC and TFC, 7307.3 mg gallic acid equivalent/g dry weight [DW] and 433.9 mg quercetin equivalent/g DW, respectively) and antioxidant values (highest DPPH, ABTS and FRAP values 4784.8, 206.6 and 2451 mg ascorbic acid equivalent/g DW, respectively) throughout all stages, although there was a gradual decline in the activity at the later stages. Furthermore, it was found that catechin had a strong binding affinity (-7.591 kcal mol-1) with the spike protein, in silico when compared with the control drug ceftazidime (-7.250 kcal mol-1). The overall outcome of our experiemnts revealed that guava peel could be explored for future pharmacological applications through in vivo studies, and the ‘green mixed with the yellow’ stage of ripening is optimum for such studies.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antiviral, COVID 19, Bioactivity, Fruit skin, Phenolics

References
Ayala-Zavala, J. F., Rosas-Domínguez, C., Vega-Vega, V. & González-Aguilar, G. A. (2010). Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: Looking for integral exploitation. Journal of Food Science, 75(8), R175–R181. doi: https://doi:10.1111/j.1750-3841.2010.01792.x
Bashir, H. A. & Abu-Goukh, A.B. A. (2003). Compositional changes during guava fruit ripening. Food Chemistry, 80(4), 557–563. doi: https://doi.org/10.1016/S0308-8146(02)00345-X
Bhardwaj, K., Najda, A., Sharma, R., Nurzyńska-Wierdak, R., Dhanjal, D. S., Sharma, R., Manickam, S., Kabra, A., Kuča, K. & Bhardwaj, P. (2022). Fruit and vegetable peel-enriched functional foods: Potential avenues and health perspectives. Evidence-Based Complementary and Alternative Medicine, 2022, 1-14. doi: https://doi.org/10.1155/2022/8543881
Bogha, T. T., Sawate, A. R., Kshirsagar, R. B., & Bochare, S. S. (2020). Studies on physical, chemical and mineral evaluation of guava (Psidium Guajava L.). Pharma Innovation Journal, 9(3), 117–119.
Bylappa, Y. & Nag, A. (2023). Comparative Analysis of Phenolic and Antioxidant Profiling of White Variety Guava Fruit (Cv Arka Mridula) Across the Ripening Stages, a Statistical Multi-Facet Study. Research Square (preprint), 1-27. doi: https://doi.org/10.21203/rs.3.rs-3131529/v2
Chen, Y., Zhou, T., Zhang, Y., Zou, Z., Wang, F. & Xu, D. (2015). Evaluation of antioxidant and anticancer activities of guava. International Journal of Food Nutrition and Safety, 6(1), 1–9.
Cho, C.-C., Li, S. G., Lalonde, T. J., Yang, K. S., Yu, G., Qiao, Y., Xu, S. & Ray Liu, W. (2022). Drug repurposing for the SARS-CoV-2 papain-like protease. Chem Med Chem, 17(1), e202100455. doi: https://doi.org/10.1002%2Fcmdc.202100455
Corrêa, L. C., Santos, C. A. F., Vianello, F., & Lima, G. P. P. (2011). Antioxidant content in guava (Psidium guajava) and araca (Psidium spp.) germplasm from different Brazilian regions. Plant Genetic Resources, 9(3), 384–391. doi: https://doi:10.1017/S1479262111000025
De Pradhan, I., & De, B. (2020). Chemical composition and lipase inhibitory property of two varieties of guava fruits at different stages of ripening. The Journal of Horticultural Science and Biotechnology, 95(6), 763–772. doi: https://doi.org/10.1080/14620316.2020.1754925
El-Ahmady, S. H., Ashour, M. L. & Wink, M. (2013). Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. Journal of Essential Oil Research, 25(6), 475–481. doi: https://doi.org/10.1080/10412905.2013.796498
Ferdinand, D. & Hartanti, L. (2023). The Utilization of Nutraceuticals and Phytochemical Compounds to Inhibit the Interaction of Spike-protein SARS-CoV-2 Virus and ACE-2 Receptor for COVID-19 Therapy (Literature Review). International Journal of Applied Biology, 7(1), 70–90.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 1–17. doi: https://doi.org/10.1186/1758-2946-4-17
Jena, A. B., Kanungo, N., Nayak, V., Chainy, G. B. N. & Dandapat, J. (2021). Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Scientific Reports, 11(1), 2043. doi: https://doi.org/10.1038/s41598-021-81462-7
Jiménez-Escrig, A., Rincón, M., Pulido, R. & Saura-Calixto, F. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. Journal of Agricultural and Food Chemistry, 49(11), 5489–5493. doi: https://doi.org/10.1021/jf010147p
Kasote, D. M., Katyare, S. S., Hegde, M. V. & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982. doi: https://doi.org/10.7150%2Fijbs.12096
Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D. S., Verma, R., Bhardwaj, P., Sharma, S. & Kumar, D. (2020). Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules, 25(12), 2812. doi: https://10.3390/molecules25122812
Lin, C., Li, Y., Zhang, Y., Liu, Z., Mu, X., Gu, C., Liu, J., Li, Y., Li, G. & Chen, J. (2021). Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein–ACE2 interaction. Signal Transduction and Targeted Therapy, 6(1), 198. doi: https://doi.org/10.1038/s41392-021-00619-y
Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X. & Chen, Q. (2018). Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis, 39(13), 1654–1662. Doi: https://doi.org/10.1002/elps.201700479
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y. & Li, Z. (2021). Antioxidant activity and healthy benefits of natural pigments in fruits: A review. International Journal of Molecular Sciences, 22(9), 4945. doi: https://doi.org/10.3390/ijms22094945
Marina, Z. & Noriham, A. (2014). Quantification of total phenolic compound and in vitro antioxidant potential of fruit peel extracts. International Food Research Journal, 21(5).
Nag, A., Bandyopadhyay, M. & Mukherjee, A. (2013). Antioxidant activities and cytotoxicity of Zingiber zerumbet (L.) Smith rhizome. Journal of Pharmacognosy and Phytochemistry, 2(3), 102–108.
Nag, A., Banerjee, R., Goswami, P., Bandyopadhyay, M. & Mukherjee, A. (2021). Antioxidant and antigenotoxic properties of Alpinia galanga, Curcuma amada, and Curcuma caesia. Asian Pacific Journal of Tropical Biomedicine, 11(8), 363-374. doi: https://doi.org/10.4103/2221-1691.319571
Nag, A., Banerjee, R., Paul, S. & Kundu, R. (2022). Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study. Computers in Biology and Medicine, 152, 1–8. doi: https://doi.org/10.1016/j.compbiomed.2022.106433
Nag, A., Paul, S., Banerjee, R. & Kundu, R. (2021). In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Computers in Biology and Medicine, 137, 104818. doi: https://doi.org/10.1016/j.compbiomed.20 21.104818
Oboh, G., Ademosun, A. O., Akinleye, M., Omojokun, O. S., Boligon, A. A. & Athayde, M. L. (2015). Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal of Ethnic Foods, 2(2), 64–73. doi: https://doi.org/10.1016/j.jef.2015.05.003
Parihar, A., Malviya, S., Khan, R., Kaushik, A. & Mostafavi, E. (2023). COVID-19 Associated Thyroid Dysfunction and Other Comorbidities and Its Management Using Phytochemical-Based Therapeutics-A Natural Way. Bioscience Reports, BSR20230293. doi: https://doi.org/10.1042/BSR20230293
Pathak, P. D., Mandavgane, S. A. & Kulkarni, B. D. (2017). Fruit peel waste: Characterization and its potential uses. Current Science, 444–454. doi: https://doi.org/https:doi.10.18520/cs/vl 13/i03/444-454
Polinati, R. M., Teodoro, A. J., Correa, M. G., Casanova, F. A., Passos, C. L. A., Silva, J. L. & Fialho, E. (2022). Effects of lycopene from guava (Psidium guajava L.) derived products on breast cancer cells. Natural Product Research, 36(5), 1405–1408. doi: https://doi.org/10.1080/14786419.2021.1880402
Santos, K. B., Guedes, I. A., Karl, A. L. & Dardenne, L. E. (2020). Highly flexible ligand docking: Benchmarking of the DockThor program on the Leads-PEP protein–peptide data set. Journal of Chemical Information and Modeling, 60(2), 667–683. doi: https://doi.org/10.1021/acs.jcim.9b00 905
Shaik, F. B., Swarnalatha, K., Mohan, M. C., Thomas, A., Chikati, R., Sandeep, G. & Maddu, N. (2022). Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 42, 62–72. doi: https://doi.org/10.1016/j.nutos.2021.12.004
Sharanaiahswamy, A. M., Bhagwan, A., Kumar, A. K. & Aparna, K. (2022). Study on effect of different organic based products as a post-harvest treatment on shelf life and quality of guava (Psidium guajava L) Cv. Lucknow-49. The Pharma Innovation, 11(7), 2132-2138.
Suwanwong, Y. & Boonpangrak, S. (2021). Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. European Journal of Integrative Medicine, 42, 101290. doi: https://doi.org/10.1016/j.eujim.2021.101290
Yen, G. O.-C., Lin, H. S.-T. & Yang, P. A. (1992). Changes in volatile flavor components of guava puree during processing and frozen storage. Journal of Food Science, 57(3), 679–681. doi: https://doi.org/10.1111/j.1365-2621.1992.tb08070.x
Section
Research Articles

How to Cite

Evaluation of phenolic and antioxidant profiles of pink Guava peel (Psidium guajava L. cv Arka kiran) during fruit ripening and its in silico Anti SARS-CoV-2 property. (2023). Journal of Applied and Natural Science, 15(4), 1557-1562. https://doi.org/10.31018/jans.v15i4.5089