Khadija H. AL-Ramlawee Esam J. Alkalifawi


Bacterial cellulose is an exopolymer prepared of α-1, 4 D glucopyranose units, created by several bacteria belonging to several genera, available in a multitude of implementations because of its greater chemical, mechanical and thermal characteristics combined with good biocompatibility and biodegradability. This present study aimed to produce low-cost, environmentally friendly Bacterial cellulose utilizing Iraqi vinegar’s mother pellicle (BCIVMP) and to study its properties. Bacterial cellulose was purified by using 0.1M NaOH and distilled water to study the properties. The chemical composition, crystallinity, particle size and surface shapes were studied using various devices. Ultraviolet -Visible Spectroscopy (UV Vis spectra) showed the optical transmission of bacterial cellulose. The mean values observed for bacterial cellulose were 273 and 542 nm. The FTIR spectrum confirmed the presence of the following functional groups –C–O and/or –C–C–, –C–O–C and/or –C–C–O and–O–H in the bacterial cellulose. The BCIVMP surface was examined by Scanning electron microscopy (SEM). At low amplification, the BCIVMP showed an extremely spongy construction with different levels of pore size. At higher amplification, both small and large clustered nanocrystals were seen. The average diameter was 17-29 nm. Ehlers-Danlos syndromes (EDS) analysis was performed to confirm the presence of the elements belonging to the functional groups present in the structure of bacterial cellulose. X-ray diffraction (XRD) diffractogram of (BCIVMP) showed the sample's high crystallinity due to the narrow double peak. The crystallinity index of(BCIVMP was found to be 91.5%. The study concluded that bacterial cellulose production from the Iraqi vinegar’s mother pellicles is eco-friendly, recyclable, and inoffensive to humans.





Bacterial Cellulose, Environmental friendly, Iraqi vinegar’s mother pellicles, Properties

Ahmed, A. A. & Abdul Latif, M. H. (2020). Preparation and Characterization of Bacterial cellulose and its composites with Nano silver particles of bioactive elements. Journal of Global Pharma Technology, 12(02), 842-853.
Ahmed, E. F., Ali, W. A. S. & Heider, N. H. (2023). Purification and characterization of bacterial nanocellulose produced by gluconobacter 5AC isolate from apple vinegar. Tropical Journal of Natural Product Research, 7(3), 2580-2585.
Ahmed, S. A., Ahmed, A. A. & Abdul Latif, M. H. (2021). Synthesis of composite from bacterial cellulose and gold nanoparticles. Journal of Physics: Conference Series, 2063 (012015), 1-11. Doi:10.1088 / 1742 6596 /2063 /1/012015
Al-Deresawi, T. S., Mohammed, M. K. & Khudhair, S. H. (2023). Isolation, screening, and identification of local bacterial isolates producing bio-cellulose. Journal of Medicinal and Chemical Sciences, 6, 622-633.
Al-Janabi, T. Y. & Al-Kalifawi, E. J. (2020). Extracellular synthesis of zinc oxide nanoparticle using pseudomonas aeruginosa and study of the antimicrobial and antibiofilm activities. Annals of Tropical Medicine and Public Health, 23(12), 1-15. DOI: 10.36295/ASRO.2020.231214
AL-Kalifawi, E. J. & Hasan, I.A. (2014). Factors influence on the yield of bacterial cellulose of kombucha (khubdat humza). Baghdad Science Journal, 11(3), 1420-1428.
Al‐Kalifawi, E. J. (2014b). Bacterial isolated from burn wound patients, study resistance to antimicrobials and effect of kombucha (khubdat humza) tea on isolates bacteria. Journal of Genetic and Environmental Resources Conservation, 2(2), 159-168.
Al‐Kalifawi, E. J. (2018). Silver Nanoparticles Synthesis by Hamza's Khubdat (A.S.) (Kombucha) tea and used in burn wounds treatment. Journal of Global Pharma Technology, 10(11), 489-500.
Al-Kalifawi, E. J., Al-Azzawi, Y. J. & Feaza, M. A. (2021). Antibacterial, antivirulence and antifungal activity of silver nanoparticles synthesized using alkhal mother shae. Journal of Physics, 1879 (022054), 1-14. DOI 10.1088/1742-6596/1879/2/022054
Al‐Kalifawi, E.J. (2014a). Produce bacterial cellulose of kombucha (khubdat humza) from honey. Journal of Genetic and Environmental Resources Conservation, 2(1), 39‐45.
Al-Khafaji, R. S. A. (2021). Synthesis of blend polymer (PVA/PANI)/Copper (1) oxide nanocomposite: thermal analysis and UV-Vis spectra specifications. Iraqi Journal of Science, 3888-3900.
Al-Salhie H. H. & Al-Kalifawi, E. J. (2020). Antimicrobial and antivirulence activity of magnesium oxide nanoparticles synthesized using Klebsiella pneumonia culture filtrate. Biochemical and Cellular Archives, 20(2), 1-11.
Atala, M. L., Jasim, H. M. & Ibrahim, K. M. (2015). Production, purification and characterization of cellulose from local isolate of Pantoea spp. Iraqi Journal of Science, 56(2B), 1324-1330.
Betlej, I., Zakaria, S. Krajewski, K. J. & Boruszewski, P. (2021). Bacterial cellulose- properties and its potential application. Sains Malaysiana, 50(2), 493-505. http://dx.doi.org/10.17576/jsm-2021-5002-20
Choi, S. M., Rao, K. M., Zo, S.M., Shin, E.J. & Han, S.S. (2022). Bacterial cellulose and its applications .Polymers, 14, 1080. https:// doi.org/10.3390/polym14061080.
Hamza, I. S., Alzubaidi, L. A., Jarallah, L. A. & Ramadhan, R. S. (2022). Improvement efficacy of Bacillus subtilis cellulose hydrolyzing by using cold plasma technique. Iraqi Journal of Science, 63(4), 1423-1430. DOI: 10.24996/ijs.2022.63.4.3. https:// doi.org/10.3390/su14042247
Jung, J.Y., Khan, T., Park, J.K. & Chang, H.N. (2007). Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering, 24(2), 265-271. https://doi.org/10.1007/s11814-007-5058-4
Kamona, Z. K., Daher, A.A. A. & Al Shamary, E. I. (2021). The use of Vitally Active Cellulose Membranes for the Reduction of Pathogenic Bacterial Count in White Cheese. Iraqi Journal of Science, 62(4), 1121-1127. DOI:10.24996/ijs.2021.62.4.8
Karić, N., Maia, A.S., Teodorović, A., Atanasova, N., Langergraber, G., Crini, G. & Đolić, M. (2022). Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 9, 100239. https://doi.org/10.1016/j.ceja.2021.100239.
Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H.A., Abdul Kari, Z., Mohd Noor, N.H. & Ray, R.R. (2021). Bacterial cellulose: production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22, 12984. https://doi.org/10.3390/ ijms222312984
Lavasani, P. S., Motevaseli, E., Shirzad, M. & Modarressi, M. H. (2017). Isolation and identification of Komagataeibacter xylinus from Iranian traditional vinegars and molecular analyses. Iranian journal of microbiology, 9(6), 338–347.
Lehrhofer, A. F., Goto, T., Kawada, T., Rosenau, T. & Hettegger, H. (2022). The in vitro synthesis of cellulose-A mini-review. Carbohydrate Polymers, 285(1), 119222 1-10. https://doi.org/10.1016/j.carbpol.2022.119222
Maria, G., La, C. Salvatore, F., Massimiliano, P. & Paolo, G. (2018). Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Applied Microbiology and Biotechnology, 102(16), 6885-6898. doi:10.1007/s00253-018-9164-5.
Márquez-Reyes, J. M., R.E. Rodríguez-Quiroz, J.P. Hernández-Rodríguez, B.A. Rodríguez-Romero, H. Flores-Breceda, J. Napoles-Armenta & M.Z. Treviño-Garza (2022). Production and characterization of biocomposite films of bacterial cellulose from kombucha and coated with chitosan. Polymers, 14(17), 3632. https://doi.org/10.3390/polym14173632.
Masek, A. & Kosmalska, A. (2022). Technological limitations in obtaining and using cellulose biocomposites. Frontiers in Bioengineering and Biotechnology, 10, 912052. https://doi.org/10.3389/fbioe.2022.912052
McNamara, J. T., Morgan, J. L.W. & Zimmer, J. (2015). A Molecular Description of Cellulose Biosynthesis. Annual Review of Biochemistry, 84, 895-921. doi:10.1146/annurev-biochem-060614-033930.
Padmanabhan, S. K., Lionetto, F., Nisi, R., Stoppa, M. & Licciulli, A. (2022). Sustainable production of stiff and crystalline bacterial cellulose from orange peel extract. sustainability, 14, 2247. https://doi.org/10.3390/su14042247
Park, S., Baker, J. O., Himmel, M. E., Parilla, P.A. & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 1-10. doi: 10.1186/1754-6834-3-10.
Phamac, T. T. & An Tranb, T. T. (2023). Evaluation of the crystallinity of bacterial cellulose produced from pineapple waste solution by using Acetobacter xylinum. ASEAN Engineering Journal, 13(2), 81-91.
Pigaleva, M. A., Bulat, M.V., Gromovykh, T. I., Gavryushina, I. A., Lutsenko, S. V., Gallyamov, M. O. & Kiselyova, O.I. (2019). A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media?. The Journal of Supercritical Fluids, 147, 59-69. https://doi.org/10.1016/j.supflu.2019.02.009
Sadalage, P. S. & Pawar, K.D. (2021). Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes. Journal of Cleaner Production, 327(10), 129462. https://doi.org/10.1016/j.jclepro.2021.129462
Salih, S. & Khalil, S. (2019). The inhibitory effect of partially purified lipopolysacharide extracted from Pseudomonas aeruginosa bacteria on Candida glabrata yeast. Biochemical and Cellular Archives, 19(2).
Saxena, I. M., & Jr. R. M. Brown (2001). Biosynthesis of cellulose. In Progress in Biotechnology (Vol. 18, pp. 69-76). Elsevier. https://doi.org/10.1016/S0921-0423(01)80057-5
Wang, Y., Wu, J. Lv, M.; Shao, Z., Hungwe, M., Wang, J. & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
Zhijun, S., Yue, Z., Glyn P.O. & Guang, Y. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539–545. doi:10.1016/j.foodhyd.2013.07.012
Zhong, C. (2020). Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8, 1425. doi: 10.3389/fbioe. 2020.605374.
Research Articles

How to Cite

Production and characterization of bacterial cellulose utilizing Iraqi vinegar’s mother pellicles. (2023). Journal of Applied and Natural Science, 15(4), 1619-1626. https://doi.org/10.31018/jans.v15i4.5030