Article Main

Sura A. Abdulateef Mustafa S. Al-Salmani Hasan A. Aal Owaif

Abstract

Acinetobacter baumannii is responsible for causing difficult-to-treat healthcare-associated infections globally, owing to its resistance to antibiotics. The intensive care unit (ICU) settings mediate spread of multidrug resistance (MDR) strains. This research aimed to evaluate non-susceptible colistin and fosfomycin A. baumannii, harboring extended-spectrum beta-lactamases (ESBLs) and carbapenemases in ICU setting. During the period of 2019-2021, this study obtained 200 A. baumanni isolates out of 1410 burns samples from an ICU setting. The antibiotic sensitivity, ESBLs and carbapenemase production were determined using clinical and laboratory standards institute (CLSI) 2020. The colistin (mcr-1 and mcr-2) and fosfomycin (fosA3) resistance genes was amplified. The highest resistance was to ceftazidime (98%), cefepime (86%), tetracycline (84%), levofloxacin (78%) and piperacillin-tazobactam (76%), while the highest sensitivity was to meropenem (63%) and tigecycline (62%). ESBL production was determined in 94% and carbapenemases were observed in 54% of A. baumannii. Four isolates (2%) were found to carry the mcr-1 gene, and three isolates (1.5%) were found to carry the mcr-2 gene. Moreover, the fosA3 was not detected in the isolates. This study showed that MDR A. baumannii was high in ICU settings. The spread of antibiotics considered the last line of defense against infections is a concern that necessitates surveillance and control measures.

Article Details

Article Details

Keywords

Acinetobacter baumannii, Carbapenemase, Colistin, ESBL, Fosfomycin

References
Abdulzahra, A. T., Khalil, M. A. & Elkhatib, W. F. (2018). First report of colistin resistance among carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in Egypt. New Microb. New Infect. 26: 53-58.
Ahmed, O. B., & Dablool, A. (2017). Quality Improvement of the DNA extracted by boiling method in Gram-negative bacteria. Inter. J. of Bioassays, 6(4), 5347-5349. doi: 10.21746/ijbio.2017.04.004.
Al-Kadmy, I. M., Ibrahim, S. A., Al-Saryi, N., Aziz, S. N., Besinis, A. & Hetta, H. F. ( 2020). Prevalence of genes involved in colistin resistance in Acinetobacter baumannii: first report from Iraq. Microb. Drug Resist. 26: 616-622.
Hamidian, M. & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 5: e000306. doi. 10.1099/mgen.0.000306.
Ibrahim, Y., Sani, Y., Saleh, Q., Saleh, A., & Hakeem, G. (2017). Phenotypic Detection of Extended Spectrum Beta lactamase and Carbapenemase Co-producing Clinical Isolates from Two Tertiary Hospitals in Kano, North West Nigeria. Ethiop J Health Sci, 27(1), 3–10. doi: 10.4314/ejhs.v27i1.2.
Janssen, A. B., Van Hout, D., Bonten, M. J., Willems, R. J. & Van Schaik, W. (2020). Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J. of Antimicrob. Chemotherapy 75: 3135-3143.
Kareem, S. M. (2020). Emergence of mcr-and fosA3-mediated colistin and fosfomycin resistance among carbapenem-resistant Acinetobacter baumannii in Iraq. Meta Gene. 25:100708. doi.10.1016/j.mgene.2020.100708.
Kooti, S., Motamedifar, M. & Sarvari, J. (2015). Antibiotic Resistance Profile and Distribution of Oxacillinase Genes among Clinical Isolates of Acinetobacter baumannii in Shiraz Teaching Hospitals, 2012-2013. Jundishapur J. of microbiol. 8: e20215. doi. 10.5812/jjm.20215v2.
Kyriakidis, L., Vasileiou, E., Pana, Z. D. & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 10: 373. doi.org/10.3390/pathogens10030373.
Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C. & Lee, S. H. (2017). Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 7: 55. doi. 10.3389/fcimb.2017.00055.
Leite, G. C., Oliveira, M. S., Perdigão-Neto, L. V., Rocha, C. K. D., Guimarães, T., Rizek, C., Levin, A. S. & Costa, S. F. (2016). Antimicrobial combinations against pan-resistant Acinetobacter baumannii isolates with different resistance mechanisms. Plos one. 11: e0151270. doi.10.1371/journal.pone.0151270.
Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H. & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological stud. Lancet Infect. Dis. 16: 161-168.
Loras, C., González-Prieto, A., Pérez-Vázquez, M., Bautista, V., Ávila, A., Sola-Campoy, P., Oteo-Iglesias, J. & Alós, J. I. (2021). Prevalence, detection and characterisation of fosfomycin-resistant Escherichia coli strains carrying fosA genes in Community of Madrid, Spain. J. Glob. Antimicrob. Resist. 25: 137-141.
Papathanakos, G., Andrianopoulos, I., Papathanasiou, A., Priavali, E., Koulenti, D. & Koulouras, V. ( 2020). Colistin-resistant Acinetobacter baumannii bacteremia: a serious threat for critically ill patients. Microorganisms 8: 287. doi.10.3390/microorganisms8020287.
Petrillo, M., Angers-Loustau, A. & Kreysa, J. (2016). Possible genetic events producing colistin resistance gene mcr-1. Lancet Infect. Dis. 16: 280. doi. 10.1016/S1473-3099(16)00005-0.
Potron, A., Poirel, L. & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int. Antimicrob. Agents 45: 568-585.
Puzniak, L., DePestel, D. D., Yu, K., Ye, G. & Gupta, V. (2021). Epidemiology and regional variation of nonsusceptible and multidrug-resistant Pseudomonas aeruginosa isolates from intensive versus non-intensive care units across multiple centers in the United States. Diagnostic Microbiol. and Infect. Dis. 99: 115172. doi.10.1016/j.diagmicrobio.2020.115172.
Sharma, A., Sharma, R., Bhattacharyya, T., Bhando, T. & Pathania, R. (2017). Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. J. Antimicrob. Chemother. 72: 68-74.
Snyman, Y., Whitelaw, A. C., Reuter, S., Dramowski, A., Maloba, M. R. & Newton-Foot, M. (2020). Clonal expansion of colistin-resistant Acinetobacter baumannii isolates in Cape Town, South Africa. Int. J. Infect. Dis. 91: 94-100.
Tsioutis, C., Kritsotakis, E. I., Karageorgos, S. A., Dimitroulia, E. & Gikas, A. (2016). Clinical epidemiology, treatment and prognostic factors of extensively drug-resistant Acinetobacter baumannii ventilator-associated pneumonia in critically ill patients. Inter. J. Antimicrob. Agents. 47: 244-248.
Wong, D., Nielsen, T. B., Bonomo, R. A., Pantapalangkoor, P., Luna, B. & Spellberg, B. (2017). Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. microbial. Rev. 30: 409-447.
Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H. & Malhotra-Kumar, S. (2016). Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 21: 30280.doi.10.2807/1560-7917.ES.2016.21.27.30280.
Section
Research Articles

How to Cite

Acinetobacter baumannii producing ESBLs and carbapenemases in the Intensive Care Units developing fosfomycin and colistin resistance. (2023). Journal of Applied and Natural Science, 15(3), 1263-1267. https://doi.org/10.31018/jans.v15i3.4872