##plugins.themes.bootstrap3.article.main##

P. Srinithi R. Mohanapriya A. Gnana Vinoba K. Vijay Aravinth

Abstract

Finger millet (Eleusine coracana L.) is an important cereal crop known for its nutritional value and adaptability to diverse
environmental conditions. In recent years, there has been growing interest in exploring the potential of plant growth regulators (PGR) to enhance crop productivity and quality. The present investigation aimed to evaluate the effect of plant growth
regulators on direct sown finger millet variety Co (Ra) 14 in 2022-23. The experiment was laid out in randomized complete block design consisting of ten treatments viz., T1 (100% RDF - Control), T2 (100% RDF + Foliar spraying of Brassinosteroid @ 0.5 ppm), T3 (100% RDF + Foliar spraying of Gibberellic acid @10 ppm), T4 (100% RDF + Foliar spraying of Salicylic acid @100 ppm), T5 (50% RDF + Foliar spraying of Brassinosteroid @ 0.5 ppm), T6 (50% RDF + Foliar spraying of Gibberellic acid @10 ppm), T7 (50% RDF + Foliar spraying of Salicylic acid @100 ppm), T8 (Foliar spraying of Brassinosteroid @ 0.5 ppm), T9 (Foliar spraying of Gibberellic acid @10 ppm), T10 (Foliar spraying of Salicylic acid @100 ppm). The experiment result showed that the application of 100% RDF + Foliar spraying of Brassinosteroid @ 0.5 ppm (T2) significantly enhanced growth and physiological parameters like plant height (134.1 cm), SPAD value (28.61), soluble protein (11.25%), relative water content (50.2%) and lower proline content (0.15 µ moles g-1). The same treatment combination recorded higher grain yield (4791 Kg ha-1), straw yield (5950 Kg ha-1), per day productivity (44.6 Kg ha-1) and partial productivity (82.9 Kg ha-1) and BEP (126.88%)of finger millet.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Finger millet, Growth parameters, Plant growth regulators, Physiological characters, Yield economics

References
Barr, H.D. & Weatherley, P.E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15, 413-428. https://doi.org/10.1071/BI9620413
Bates, L.S., Waldren, R.P. and Teare, I.D. (1973).Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Dawood, M. G., Sadak, M. S. & Hozayen, M. (2012). The physiological role of salicylic acid in improving performance, yield, and some biochemical aspects of sunflower plants grown under the newly reclaimed sandy soil. Australian Journal of Basic and Applied Sciences. 6(4):82-89.
Desoky, E. S. M., Mansour, E., Ali, M. M., Yasin, M. A., Abdul-Hamid, M. I., Rady, M. M. & Ali, E. F. (2021). Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants, 10(2), 354. https://doi.org/10.3390/plants10020354
Dobermann, A. (2007). Nutrient use efficiency–measurement and management.
Farjam, S., Siosemardeh, A., Arbat, H., Yarnia, M. & Rokhzadi, A. (2013). Response of chickpea (Cicer arietinum L.) to exogenous salicylic acid and ascorbic acid under vegetative and reproductive drought stress conditions. Journal of Applied Botany and Food Quality 87, 80 – 86. DOI:10.5073/JABFQ.2014.087.012
Gomez, K. A. & Gomez, A. A. (2010). Statistical procedures for agricultural research.
Gonzales, K.A. & Van deer veen, M.G. (1989). Designing technically feasible and economically viable cropping patterns: EX-Antle, working paper, Agroecological unit, Scientia Horticulturea., 78, 127-157.
Hayat, Q., Hayat, S., Irfan, M. & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
Houshyar, E., Zareifard, H. R., Grundmann, P. & Smith, P. (2015). Determining efficiency of energy input for silage corn production: An econometric approach. Energy, 93, 2166-2174. https://doi.org/10.1016/j.energy.2015.09.105
Jackson, M. L. (1973). Soil chemical analysis, prentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
Khan, K. & Mazid, M. (2018). Chickpea responses to application of plant growth regulators, organics and nutrients. Adv Plants Agric Res, 8(3), 259-273.
Kumar, A., Ramesh, R. & Ramprasad, E. (2015). Effect of plant growth regulators on morphological, physiological and biochemical parameters of soybean (Glycine max L. Merrill). Biotechnology and Bio forensics: new trends, 61-71.
Kumar, R., Yadav, R. K., Sharma, N., Yadav, A. & Nehal, N. (2018). Influence of plant growth regulators on biochemical changes of mungbean (Vigna radiata L. Wilczek). Journal of Pharmacognosy and Phytochemistry, 7(1S), 386-389.
Liu, J., Zhang, D., Sun, X., Ding, T., Lei, B. & Zhang, C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1-17. https://doi.org/10.1016/j.steroids.2017.05.005
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(20)56859-2
Makowski, D., Hillier, J., Wallach, D., Andrieu, B., & Jeuffroy, M. H. (2006). Parameter estimation for crop models. Working with dynamic crop models, 101-149.
Mesfin, K. and Zemach, S.(2015). Effect of nitrogen and phosphorus fertilizer rates on yield and yield components of barley (Hordeum Vugarae L.) varieties at Damot Gale District, Wolaita Zone, Ethiopia. American Journal of Agriculture and Forestry. 271-275. http://dx.doi.org/10.24966/AAF-5523/100049
Mohanabharathi, M., Sritharan, N., Senthil, A. & Ravikesavan, R. (2019). Physiological studies for yield enhancement in finger millet under drought conditions. Journal of Pharmacognosy and Phytochemistry, 8(3), 3308-3312.
Mollasadeghi, V., Valizadeh, M., Shahryari, R. and Akbar Imani A. (2011). Evaluation of drought tolerance of bread wheat genotypes using stress tolerance indices in the presence of potassium humate. American-Eurasian J. Agric. Environ. Sci. 10(2):151-156.
Mousavi, S. H., Rafiee, S., Jafari, A. & Mohammadi, A. (2019). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765-2772. https://doi.org/10.1016/j.energy.2011.02.016
Mundada, P.S., Nikam, T.D., Kumar, S.A., Umdale, S.D. and Ahire, M.L. (2020). Morpho-physiological and biochemical responses of finger millet (Eleusine coracana (L.) Gaertn.) genotypes to PEG-induced osmotic stress. Biocatalysis and Agricultural Biotechnology 23,101488. https://doi.org/10.55779/nsb14411097
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Patra, P. S., Sinha, B., Paramanik, B. & Mula, G. (2012). Agronomic efficiency, partial factor productivity, and seed yield of groundnut (Arachis hypogeae L.) as influenced by different sources of organic manures. International journal of Bio-resource and Stress Management, 3(2), 173-176.
Peng, S., Garcia, F. V., Laza, R. C. & Cassman, K. G. (1993). Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal, 85(5), 987-990. https://doi.org/10.2134/agronj1993.00021962008500050005x
Prabha, V. V., Senthil, A., Sritharan, N. & Boominathan, P. (2016). Effect of foliar application of plant growth regulators and nutrients on physiological traits of finger millet (Eleusine coracana). Research on Crops, 17(3), 483-488. http://dx.doi.org/10.5958/2348-7542.2016.00079.6
Ramesh, R, Kumar, A. & Ramprasad, E. (2015). Effect of plant growth regulators on morphological, physiological and biochemical parameters of soybean (Glycine max L. Merrill). Biotechnology and bioforensics: new trends, 61-71. https://doi.org/10.1007/978-981-287-050-6_7
Revathi, T, M., Rekha., S. and Pradeepkumar, S. (2018). Ensuring Economic Gains from Finger millet (Eleucine coracana L.) due to Different Dates of Sowing and Varieties. International Journal of Current Microbiology and Applied Sciences, 6: 2050-2054.
Sengupta, K. & Tamang, D. (2015). Response of green gram to foliar application of nutrients and brassinolide. Journal Crop and Weed, 11(1), 43-45.
Smith, G. W. (1963).Benefit-cost ratios: a word of caution and discussion. Highway Research Record, (12).
Stanford, G. & English, L. (1949). Use of the flame photometer in rapid soil tests for K and Ca.
Subbiah, B. V. (1956). A rapid procedure for the determination of available nitrogen in soils. Curr Sci, 25, 259-260.
Suresh, G., Guru, G. & Lokanadan, S. (2018). Effect of nutrient levels and plant growth regulators on growth parameters of Pearl Millet. International Journal of Pure and Applied Bioscience, 6(3), 271-277.
Taheri, A., Khojastehpour, M., Rohani, A., Khoramdel, S. & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135, 405-412. https://doi.org/10.1016/j.energy.2017.06.089
Triveni, U., Rani, Y. S., Patro, T. S. S. K., Anuradha, N. & Divya, M. (2018). Fertilizer responsiveness of short duration improved finger millet genotypes to different levels of NPK fertilizers. Indian Journal of Agricultural Research, 52(1), 97-100. http://dx.doi.org/10.18805/IJARe.A-4801
Ullah, F., Bano, A. & Nosheen, A. (2012). Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pak. J. Bot, 44(6), 1873-1880.
Walkley, A. (1934). An examination of the method of determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci., 37, 29-38.
Wei, Z. & Li, J. (2016). Brassinosteroids regulate root growth, development, and symbiosis. Molecular plant, 9(1), 86-100. https://doi.org/10.1016/j.molp.2015.12.003
Zhang, C., Bai, M. Y. & Chong, K. (2014). Brassinosteroid-mediated regulation of agronomic traits in rice. Plant cell reports, 33, 683-696.
Section
Research Articles

How to Cite

Growth analysis and parametric budgeting of different exogenous phytohormones on direct sown finger millet (Eleusine coracana L.) under irrigated conditions. (2023). Journal of Applied and Natural Science, 15(3), 1254-1262. https://doi.org/10.31018/jans.v15i3.4868