##plugins.themes.bootstrap3.article.main##

Khushbu Sharma Rachna Gulati Sushma Singh Ankur Kumari Pankaj Sharma

Abstract

The aquaculture industry is growing quickly due to increased fish consumption and a decline in wild fish catch. About half of the world's seafood demand for human consumption is now met by farmed seafood. The aquafeed market is expanding along with the aquaculture sector. Some of the elements in shrimp feed are derived from terrestrial plants and low-value forage fishes (fish meal). It is impossible to produce more fish meals since doing so would harm the ocean's environment and sustainability. The reduction in shrimp feed cost can also be done by introducing low-cost, environment-friendly ingredients in shrimp feed formulation. Therefore, new and ecologically friendly shrimp (Litopenaeus vannamei) feed component sources must be created. Live food organisms are a preferable option for this since they provide a variety of essential amino acids and beneficial triglycerides like fat, vitamins, and colors in their cell metabolites. Microalgae biomasses also represent feasible ingredients for shrimp feed sources. Their distinctive variety of bioactive chemicals can enhance color and pellet quality, act as a bulk element in shrimp feed, and boost the viability of farmed species. Live food organisms have a great economic potential since they have the highest  biomass productivity of all photosynthetic organisms. In addition to giving farmers and exporters a better choice for feeding their fish, the availability of on-grown live food would also open up the prospect of improving the performance and quality of the fish and shrimp through bioencapsulation. This review study examines the possibility of generating natural food biomass as a component in shrimp feed.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Aquaculture, aqua feed, Litopenaeus vannamei, Live food organisms, Sustainability

References
Afewerki, S., Asche, F., Misund, B., Thorvaldsen, T. & Tveteras, R. (2023). Innovation in the Norwegian aquaculture industry. Reviews in Aquaculture, 15(2), 759-771.
Alam, M. I., Ahmed, M. U., Yeasmin, S., Debrot, A. O., Ahsan, M. N. and Verdegem, M. C. J. (2022). Effect of mixed leaf litter of four mangrove species on shrimp post larvae (Penaeus monodon, Fabricius, 1798) performance in tank and mesocosm conditions in Bangladesh. Aquaculture, 551: 737968.
Alam, M., Sultan, M. B., Mehnaz, M., Fahim, C. S. U., Hossain, S., & Anik, A. H. (2022). Production of biogas from food waste in laboratory scale dry anaerobic digester under mesophilic condition. Energy Nexus, 7, 100126.
Allen, K. M., Habte-Tsion, H. M., Thompson, K. R., Filer, K., Tidwell, J. H. & Kumar, V. (2019). Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed. Scientific reports, 9(1), 1-10.
Ansari, F. A., Guldhe, A., Gupta, S. K., Rawat, I., & Bux, F. (2021). Improving the feasibility of aquaculture feed by using microalgae. Environmental Science and Pollution Research, 28(32), 43234-43257.
Arora, N., Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M., Pruthi, V., & Chauhan, P. K. (2020). Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture. Bioresource Technology, 297, 122489.
Arun, J., Gopinath, K. P., SundarRajan, P., Felix, V., JoselynMonica, M., & Malolan, R. (2020). A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresource technology reports, 11, 100477.
Bakun, A., & Broad, K. (2003). Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fisheries Oceanography, 12(4‐5), 458-473.
Balla, A., Silini, A., Cherif-Silini, H., Chenari Bouket, A., Alenezi, F. N., & Belbahri, L. (2022). Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Applied Sciences, 12(18), 9020
Bature, A., Melville, L., Rahman, K. M., & Aulak, P. (2022). Microalgae as feed ingredients and a potential source of competitive advantage in livestock production: A review. Livestock Science, 259, 104907.
Bauer, R. T. (2023). Fisheries and Aquaculture. In Shrimps: Their Diversity, Intriguing Adaptations and Varied Lifestyles (pp. 583-655). Cham: Springer International Publishing.
Baweja, P., & Sahoo, D. (2015). Classification of algae. The algae world, 31-55.
Beauchamp, K. A., Kathman, R. D., McDowell, T. S., & Hedrick, R. P. (2001). Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Phylogenetics and Evolution, 19(2), 216-224.
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
Beveridge, M. C., Thilsted, S. H., Phillips, M. J., Metian, M., Troell, M. & Hall, S. J. (2013). Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculturea. Journal of fish biology, 83(4), 1067-1084.
Bhat, R. A. H., Mallik, S. K., Tandel, R. S. & Shahi, N. (2023). An Overview of Cold-Water Fish Diseases and Their Control Measures. Fisheries and Aquaculture of the Temperate Himalayas, 255-283.
Blomqvist, J., Pickova, J., Tilami, S. K., Sampels, S., Mikkelsen, N., Brandenburg, J. & Passoth, V. (2018). Oleaginous yeast as a component in fish feed. Scientific Reports, 8(1), 15945.
Board, R. D. D. (2017). Biological aspects of river. Causes and Effects: River Pollution, 311.
Brunel, M., Burkina, V., Sampels, S., Pickova, J. & Moazzami, A. A. (2022). Oleaginous yeast (Rhodotorula toruloides) biomass effect on metabolism of Arctic char (Salvelinus alpinus). Frontiers in Molecular Biosciences, 822.
Bwala, R. L., & Omoregie, E. (2009). Organic enrichment of fish ponds: application of pig dung vs. tilapia yield. Pakistan Journal of Nutrition, 8(9), 1373-1379.
Das, P., Mandal, S. C., Bhagabati, S. K., Akhtar, M. S. & Singh, S. K. (2012). Important live food organisms and their role in aquaculture. Frontiers in aquaculture, 5(4), 69-86.
Dennis, L. P., Anderson, K., Wylie, M., Van In, V., Nocillado, J. & Elizur, A. (2021). NextGen molecular barcoding of larval grouper diet in an extensive green-water pond system. Aquaculture, 531, 735971.
Detkeow, D. & Subsoontorn, P. (2022). Development of microfluidic tools for studying individual zooplanktons (Doctoral dissertation, Naresuan University).
Dey, T., Ghosh, P. K., Nandi, S. K., Chowdhury, G., Mian, S. & Uddin, M. S. (2022). A Review on n-3 HUFA and Live Food Organism for Marine Fish Larvae Nutrition. American Journal of Agricultural Science, Engineering, and Technology, 6(3), 88-102.
Dhawan, A. & Kaur, S. (2002). Pig dung as pond manure: Effect on water quality, pond productivity and growth of carps in polyculture system.
Dhert, P., Rombaut, G., Suantika, G. & Sorgeloos, P. (2001). Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200(1), 129–146.
FAO (2018). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Licence: CC BY-NC-SA 3.0 IGO; Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations: Rome, Italy.
FAO (2019). Fisheries Department, Fishery Information, Data and Statistics Unit. 2019. FishStatJ, a tool for fishery statistics analysis, Release: 3.5.0, Universal Software for Fishery Statistical Time Series. Global aquaculture production: Quantity 1950–2017; Value 1950–2017; Global capture production. Rome, Italy, 1950–2017pp.
FAO (2020).World food situation. http://www.fao.org/worldfoodsituation/csdb/en/
Fontaneto, D., De Smet, W. H., & Melone, G. (2008). Identification key to the genera of marine rotifers worldwide. Meiofauna Marina, 16(1), 75-99.
Goda, A. A., Omar, E. A., Srour, T. M., Nour, A. M., Ismail, M. M., Baromh, M. Z., & Kotit, A. M. (2018). Dietary Spirulina platensis and Chlorella marina Microalgae as Growth Promoters During Weaning Post Larvae of European Seabass, Dicentrarchus labrax. Journal of the Advances in Agricultural Researches, 23(3), 542-557.
Gomez, H. J. A., Villalaz, G. J. R., & Goti, I.(2023). History, present, and future of the shellfish fishery in Panama: An update. Journal of fish research, (1), 131
Guimarães, A. M., Dias Schleder, D., Nagata, M., Nóbrega, R. O., Fracalossi, D. M., Quadros Seiffert, W., & do Nascimento Vieira, F. (2019). Aurantiochytrium sp. meal can replace fish oil in practical diets for the juvenile Pacific white shrimp. Aquaculture Nutrition, 25(4), 798-807.
Han, C., Kim, H. J., Lee, J. S., Sakakura, Y., & Hagiwara, A. (2023). Differential modes of response to zinc chloride in the marine rotifers Brachionus plicatilis and Brachionus rotundiformis: reproductive flexibility and stress-defensive activity. Aquaculture, 564, 739081.
Haoujar, I., Haoujar, M., Altemimi, A. B., Essafi, A., & Cacciola, F. (2022). Nutritional, sustainable source of aqua feed and food from microalgae: a mini review. International Aquatic Research, 14(3).
Hayes, M., & García-Vaquero, M. (2016). Bioactive compounds from fermented food products. Novel Food Fermentation Technologies, 293-310.
He, M., Yan, M., Chen, X., Wang, X., Gong, H., Wang, W., & Wang, J. (2022). Bioavailability and toxicity of microplastics to zooplankton. Gondwana Research, 108, 120-126.
Hirabayashi, J., Dutta, S. K., & Kasai, K. I. (1998). Novel galactose-binding proteins in Annelida: Characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricus terrestris. Journal of Biological Chemistry, 273(23), 14450-14460.
Hodar, A. R., Vasava, R. J., Mahavadiya, D. R., & Joshi, N. H. (2020). Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India, 23(1), 13-21.
Hussain, J., Wang, X., Sousa, L., Ali, R., Rittmann, B. E., & Liao, W. (2020). Using non-metric multi-dimensional scaling analysis and multi-objective optimization to evaluate green algae for production of proteins, carbohydrates, lipids, and simultaneously fix carbon dioxide. Biomass and Bioenergy, 141, 105711.
Indexmundi, (2021). Fishmeal yearly price. www.indexmundi.com. (accesed 27 August 2021).
Jaseera, K. V., Ebeneezar, S., Sayooj, P., Nair, A. V., & Kaladharan, P. (2021). Dietary supplementation of microalgae, Aurantiochytrium sp. and co-feeding with Artemia enhances the growth, stress tolerance and survival in Penaeus monodon (Fabricius, 1798) post larvae. Aquaculture, 533, 736176.
Jones, S. W., Karpol, A., Friedman, S., Maru, B. T., & Tracy, B. P. (2020). Recent advances in single cell protein use as a feed ingredient in aquaculture. Current opinion in biotechnology, 61, 189-197.
Kandathil Radhakrishnan, D., AkbarAli, I., Schmidt, B. V., John, E. M., Sivanpillai, S., & Thazhakot Vasunambesan, S. (2020). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research, 51(1), 1-17.
Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46, 101800.
Khushbu, Gulati, R. and Sushma (2022). Nutraceutical aspects of Azolla: A low-cost organic input for Livestock. International Journal of Biological Innovations. 4(1): 163-170. https://doi.org/10.46505/IJBI.2022.4118.
Kokou, F., & Fountoulaki, E. (2018). Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture, 495, 295-310.
Kolbasov, G. A., Zalota, A. K., & Chan, B. K. (2023). Trophic ecology of crustacean endoparasites Petrarca and Baccalaureus (Ascothoracida, Thecostraca) in scleractinian and zoantharian corals. Marine Ecology Progress Series, 715, 69-78.
Koste, W., & Shiel, R. J. (1987). Rotifera from australian inland waters. II. Epiphanidae and brachionidae (Rotifera: Monogononta). Invertebrate Systematics, 1(7), 949-1021.
Lall, S. P., & Dumas, A. (2022). Nutritional requirements of cultured fish: Formulating nutritionally adequate feeds. In Feed and feeding practices in aquaculture (pp. 65-132). Woodhead publishing.
Li, Y., Lei, Y., Tan, Y., Zhang, J., Hong, H. & Luo, Y. (2022). Efficacy of freeze-chilled storage combined with tea polyphenol for controlling melanosis, quality deterioration, and spoilage bacterial growth of Pacific white shrimp (Litopenaeus vannamei). Food Chemistry, 370: 130924.
Liu, X., Chen, G., Tao, Y., & Wang, J. (2020). Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2. Renewable Energy, 149, 708-715.
Lubzens, E. (1987). Raising rotifers for use in aquaculture. In Rotifer Symposium IV: Proceedings of the Fourth Rotifer Symposium, held in Edinburgh, Scotland, August 18–25, 1985 (pp. 245-255). Springer Netherlands.
Lubzens, E., Zmora, O., Stottrup, J., & McEvoy, L. (2003). Production and nutritional value of rotifers. Live feeds in marine aquaculture, 300-303.
Madeira, M. S., Cardoso, C., Lopes, P. A., Coelho, D., Afonso, C., Bandarra, N. M., & Prates, J. A. (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205, 111-121.
Magoni, C., Bertacchi, S., Giustra, C. M., Guzzetti, L., Cozza, R., Ferrari, M., & Labra, M. (2022). Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends in Food Science & Technology.
Mahmut, K., Demiray, G. A., & Sevgiler, Y. (2022). Oxidative and osmoregulatory effects of imidacloprid, cadmium, and their combinations on Daphnia magna. Environmental Toxicology and Pharmacology, 95, 103963.
Mandal, B. B., & Kundu, S. C. (2009). Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 30(15), 2956-2965.
Marketwatch, 2020. Aquaculture Market Size 2020. https://www.marketwatch.com/ (accesed 27 August 2021).
Marques, A., Dhont, J., Sorgeloos, P., & Bossier, P. (2004). Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. Journal of Experimental Marine Biology and Ecology, 312(1), 115-136.
Martínez‐Córdova, L. R., Emerenciano, M., Miranda‐Baeza, A., & Martínez‐Porchas, M. (2015). Microbial‐based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, 7(2), 131-148.
Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of environmental management, 227, 395-405.
Montoya‐Camacho, N., Marquez‐Ríos, E., Castillo‐Yáñez, F. J., Cárdenas López, J. L., López‐Elías, J. A., Ruíz‐Cruz, S., & Ocaño‐Higuera, V. M. (2019). Advances in the use of alternative protein sources for tilapia feeding. Reviews in Aquaculture, 11(3), 515-526.
Mortoja, S. G., Panja, P., & Mondal, S. K. (2023). Stability Analysis of Plankton–Fish Dynamics with Cannibalism Effect and Proportionate Harvesting on Fish. Mathematics, 11(13), 3011.
Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20.
Nidhina, N., & Muthukumar, S. P. (2015). Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing. Food Chemistry, 173, 920-926.
Pinto, A. P., Faria, J. M., Dordio, A. V., & Carvalho, A. P. (2023). Organic Farming–a Sustainable Option to Reduce Soil Degradation. Agroecological Approaches for Sustainable Soil Management, 83-143.
Prado-Cabrero, A., Herena-Garcia, R., & Nolan, J. M. (2022). Intensive production of the harpacticoid copepod Tigriopus californicus in a zero-effluent ‘green water’bioreactor. Scientific Reports, 12(1), 466.
Radhakrishnan, D. K., Kumar, S., & Ali, I. A. (2022). Different Animal Feeds and Their Role in Aquaculture. In Aquaculture Science and Engineering (pp. 99-129). Singapore: Springer Nature Singapore.
Rahimi-Midani, A. (2023). Comparison of Aquaculture Practices with and Without Deep Tech. In Deep Technology for Sustainable Fisheries and Aquaculture (pp. 79-140). Singapore: Springer Nature Singapore.
Rajeev, R., Adithya, K. K., Kiran, G. S. & Selvin, J. (2021). Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture, 13(1), 238-258.
Rashad, S. & A El-Chaghaby, G. (2020). Marine Algae in Egypt: distribution, phytochemical composition and biological uses as bioactive resources (a review). Egyptian Journal of Aquatic Biology and Fisheries, 24(5), 147-160.
Romanova, E. M Romanov, V. V., Lyubomirova, V. N., Shadieva, L. A. & Shlenkina, T. M. (2020). Increase in nonspecific resistance of catfish (Clarias gariepinus) in industrial aquaculture. In BIO Web of Conferences (Vol. 17, p. 00122). EDP Sciences.
Rottmann, R. W., Graves, J. S., Watson, C. & Yanong, R. P. (1992). Culture techniques of Moina: the ideal Daphnia for feeding freshwater fish fry (Vol. 1054). Gainesville, FL: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
Sadeghi, A., Ebrahimi, M., Kharazmi, M. S. & Jafari, S. M. (2023). Role of nanomaterials in improving the functionality of probiotics; integration of nanotechnology onto micro-structured platforms. Food Bioscience, 102843.
Samat, N. A., Yusoff, F. M., Rasdi, N. W. & Karim, M. (2020). Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals, 10(12), 2457.
Samat, N. A., Yusoff, F. M., Rasdi, N. W. & Karim, M. (2020). Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals, 10(12), 2457.
Samuelsen, T. A., Oterhals, Å. & Kousoulaki, K. (2018). High lipid microalgae (Schizochytrium sp.) inclusion as a sustainable source of n-3 long-chain PUFA in fish feed—Effects on the extrusion process and physical pellet quality. Animal Feed Science and Technology, 236, 14-28.
Schwepe, C. W., Wojno, M., Molinari, G. S. & Kwasek, K. (2022). The Effects of Plant Protein-Enriched Live Food on Larval Zebrafish Growth and the Status of Its Digestive Tract Development. Zebrafish, 19(6), 229-240.
Sharawy, Z. Z., Ashour, M., Abbas, E., Ashry, O., Helal, M., Nazmi, H. & Goda, A. (2020). Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 51(6), 2216-2228.
Sørensen, M., Berge, G. M., Reitan, K. I. & Ruyter, B. (2016). Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar)—Effect on nutrient digestibility, growth and utilization of feed. Aquaculture, 460, 116-123.
Syanya, F. J., Mathia, W. M. & Harikrishnan, M. (2023). Current Status and Trend on the Adoption of Fish Feed Additives for Sustainable Tilapia Aquaculture Production: A Review. Asian Journal of Fisheries and Aquatic Research, 22(3), 10-25.
Szopa, D., Mielczarek, M., Skrzypczak, D., Izydorczyk, G., Mikula, K., Chojnacka, K. & Witek-Krowiak, A. (2022). Encapsulation efficiency and survival of plant growth-promoting microorganisms in an alginate-based matrix–A systematic review and protocol for a practical approach. Industrial Crops and Products, 181, 114846.
Tacon, A. G. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture, 28(1), 43-56.
Tavakoli, S., Hong, H., Wang, K., Yang, Q., Gahruie, H. H., Zhuang, S. & Luo, Y. (2021). Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. Algal Research, 60, 102493.
Tibbetts, S. M., Mann, J. & Dumas, A. (2017). Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture, 481, 25-39.
Ullah, Z., Ahmed, G., un Nisa, M. & Sarwar, M. (2016). Standardized ileal amino acid digestibility of commonly used feed ingredients in growing broilers. Asian-Australasian journal of animal sciences, 29(9), 1322.
Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno, G. W. & Cavalli, R. O. (2021). Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19, 100611.
van der Meeren, T., Olsen, R. E., Hamre, K. & Fyhn, H. J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2-4), 375-397.
Van Stappen, G. (1996). 4.1. Introduction, biology and ecology of Artemia. Manual on the production and use of live food for aquaculture.
Vázquez, J. A., González, M. & Murado, M. A. (2005). Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture, 245(1-4), 149-161.
Wan, J. K., Chu, W. L., Kok, Y. Y. & Lee, C. S. (2019). Distribution of microplastics and nanoplastics in aquatic ecosystems and their impacts on aquatic organisms, with emphasis on microalgae. Reviews of Environmental Contamination and Toxicology Volume 246, 133-158.
Wang, J. H., Zhang, T. Y., Dao, G. H., Xu, X. Q., Wang, X. X., & Hu, H. Y. (2017). Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Applied microbiology and biotechnology, 101, 2659-2675.
Wickramasuriya, S. S., Yi, Y. J., Yoo, J., Kang, N. K. & Heo, J. M. (2015). A review of canola meal as an alternative feed ingredient for ducks. Journal of animal science and technology, 57(1), 1-9.
Xu, Z., Liang, Q., Chen, Z., Dong, Z., Guo, Y., & Wang, Z. (2023). Weighted Gene Co-Expression Network Analysis of red body color formation of crimson snapper, Lutjanus erythropterus. Aquaculture Reports, 31, 101651.
Yadav, A. N. (2020). Plant microbiomes for sustainable agriculture: current research and future challenges (pp. 475-482). Springer International Publishing.
Yamasaki, S., & Hirata, H. (1990). Relationship between food consumption and metabolism of roifer Brachionus plicatillis. Nippon Suisan Gakkaishi, 56(4), 591-594.
Zhang, Y., Feng, S., Zhu, L., Li, M. & Xiang, X. (2023). Population dynamics of Brachionus calyciflorus driven by the associated natural bacterioplankton. Frontiers in Microbiology, 13, 1076620.
Zhou, L., Li, Z. & Hiltunen, E. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction.
Section
Research Articles

How to Cite

Potentiality of natural live food organisms in shrimp culture: A review. (2023). Journal of Applied and Natural Science, 15(4), 1373-1385. https://doi.org/10.31018/jans.v15i4.4812