##plugins.themes.bootstrap3.article.main##

Libi Robin, P https://orcid.org/0000-0003-3960-893X Kaleeswari, R.K. Janaki, P Uma. D Karthikeyan, S

Abstract

This study on soil carbon dynamics provides valuable insights for sustainable agricultural practices, optimizing crop productivity and environmental sustainability in maize-based cropping systems. The present study aimed to find out the soil characteristics and carbon dynamics in maize-based cropping systems in the Western zone of Tamil Nadu, India. Soil samples from six cropping systems were analyzed for bulk density, sand, silt, clay content, pH, available nutrients (N, P, K, Zn), total organic carbon (TOC), oxidizable organic carbon fractions, microbial biomass carbon (MBC), and carbon pools. The distribution of oxidizable organic carbon fractions varied among cropping systems and soil depths. The easily decomposable and moderately labile fractions were highest in the maize-black gram system, while the recalcitrant fraction showed variations across cropping systems. The active carbon pool (Cf1 + Cf2) was highest at 2.53 g kg-1 in the maize-blackgram system, while the passive carbon pool (Cf3 + Cf4) was also highest at 3.79 g kg-1 in this system. The study also assessed the carbon stock and microbial biomass carbon. TOC content decreased with depth, with the highest values observed in the topsoil. The maize-black gram system had the highest TOC content at all depths. MBC content followed a similar pattern, with the highest values in the topsoil and the maize-black gram system. These findings provided insights into the soil characteristics and carbon dynamics in maize-based cropping systems in the study area. The long-term integration of maize cultivation with blackgram demonstrated significant enhancements in organic carbon levels, TOC content, microbial biomass carbon (MBC), and both passive and active carbon pools characterized by rapid turnover rates. 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Carbon stocks, Maize-based cropping systems, Microbial biomass carbon, Organic carbon dynamics, Soil carbon dynamics

References
Abid, M., Batool, T., Siddique, G., Ali, S., Binyamin, R., Shahid, M. J., Rizwan, M., Alsahli, A. A. & Alyemeni, M. N. (2020). Integrated nutrient management enhances soil quality and crop productivity in maize-based cropping system. Sustainability, 12(23), 10214. https://doi.org/10.3390/su122310214
Benbi, D. K., Kiranvir, B. R. A. R. & Sharama, S. (2015). Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere, 25(4), 534-545. https://doi.org/10.1016/S1002-0160(15)30034-5
Carpenter-Boggs, L., Stahl, P. D., Lindstrom, M. J. & Schumacher, T. E. (2003). Soil microbial properties under permanent grass, conventional tillage, and no-till management in South Dakota. Soil and Tillage Research, 71(1), 15-23. https://doi.org/10.1016/S0167-1987(02)00158-7
Chan, K. Y. (2001). Soil particulate organic carbon under different land use and management. Soil use and management, 17(4), 217-221. https://doi.org/10.1111/j.1475-2743.2001.tb00030.x
Choudhary, O. P. & Gill, J. K. (2013). Water-extractable carbon pools and microbial biomass carbon in sodic water-irrigated soils amended with gypsum and organic manures. Pedosphere, 23(1), 88-97. https://doi.org/10.1016/S1002-0160(12)60083-6
Dakshinamurthi, C. & Gupta, R. P. (1968). Practicals in soil physics. IARI, New Delhi.
Das, A., Patel, D. P., Kumar, M., Ramkrushna, G. I., Mukherjee, A., Layek, J., Ngachan, S. V. & Buragohain, J. (2017). Impact of seven years of organic farming on soil and produce quality and crop yields in eastern Himalayas, India. Agriculture, ecosystems & environment, 236, 142-153. https://doi.org/10.1016/j.agee.2016.09.007
Ding, X., Yuan, Y., Liang, Y., Li, L. & Han, X. (2014). Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. Journal of Soils and Sediments, 14, 854-859. https://doi.org/10.1007/s11368-013-0840-x
Hazra, K. K., Ghosh, P. K., Venkatesh, M. S., Nath, C. P., Kumar, N., Singh, M., Singh, J. & Nadarajan, N. (2018). Improving soil organic carbon pools through inclusion of summer mungbean in cereal-cereal cropping systems in Indo-Gangetic plain. Archives of Agronomy and Soil Science, 64(12), 1690-1704. https://doi.org/10.1080/0 3650340.2018.1451638
Hema, R., Santhy, P., Somasundaram, E. & Patil, S. G. (2019). Impact of different cropping and different nutrient management practices on soil carbon pools and soil carbon stock in vertic ustropept. Journal of Pharmacognosy and Phytochemistry, 8(3), 3424-3428.
Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
Jat, H. S., Datta, A., Sharma, P. C., Kumar, V., Yadav, A. K., Choudhary, M., Choudhary, V., Gathala, M. K., Sharma, D. K., Jat, M. L. & Yaduvanshi, N. P. S. (2018). Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 64(4), 531-545. https://doi.org/10.1080/03650340.2017.1359415
Kumar, V., Jat, H. S., Sharma, P. C., Gathala, M. K., Malik, R. K., Kamboj, B. R., Yadav, A. K., Ladha, J. K., Raman, A., Sharma, D. K. & McDonald, A. (2018). Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agriculture, Ecosystems and Environment, 252, 132-147. https://doi.org/10.1016/j.agee.2017.10.006
Lal, R. (1997). Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil and tillage research, 42(3), 145-160. https://doi.org/10.1016/S0167-1987(97)00006-8
Lal, R. (2013). Soil carbon management and climate change. Carbon Management, 4(4), 439-462. https://doi.orgE10.4155/cmt.13.31
Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global change biology, 24(8), 3285-3301. https://doi.org/10.1111/gcb.14054
Li, Z., Yang, X., Cui, S., Yang, Q., Yang, X., Li, J. & Shen, Y. (2018). Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative. Field Crops Research, 222, 164-179. https://doi.org/10.1016/j.fcr.2018.03.027
Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.https://doi.org/10.2136/sssaj1978.03615995004200030009x
Liu, N., Li, Y., Cong, P., Wang, J., Guo, W., Pang, H. & Zhang, L. (2021). Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil and Tillage Research, 205, 104772. https://doi.org/10.1016/j.still.2020.104772
Majumder, B. (2006). Soil organic Carbon Pools and Biomass Productivity Under Agroecosystems of Subtropical India [PhD thesis]. Environmental Engineering Division, Department of Civil Engineering, Jadavpur University, Kolkata, India, 183.
Majumder, B., Mandal, B., Bandyopadhyay, P. K., Gangopadhyay, A., Mani, P. K., Kundu, A. L. & Mazumdar, D. (2008). Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil science society of America journal, 72(3), 775-785. https://doi.org/10.2136/sssaj2006.0378
Mamta, S., Kumar, R., Bairwa, R., Meena, P. & Meena, M. C. (2023). Assessment of carbon pools and stability of soil aggregates in inceptisols of Indo-Gangetic plains as influenced by seven-year continuous tillage practices under maize-based cropping system. Communications in Soil Science and Plant Analysis, 54(4), 544-558. https://doi.org/10.1080/00103624.2022.2118298
Meena, J. R., Behera, U. K., Chakraborty, D. & Sharma, A. R. (2015). Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L.) under maize-based cropping systems. International Soil and Water Conservation Research, 3(4), 261-272. https://doi.org/10.1016/j.iswcr.2015.11.001
Meetei, T. T., Kundu, M. C. & Devi, Y. B. (2020). Long-term effect of rice-based cropping systems on pools of soil organic carbon in farmer’s field in hilly agroecosystem of Manipur, India. Environmental monitoring and assessment, 192, 1-17. https://doi.org/10.1007/s10661-020-8165-x
Merante, P., Dibari, C., Ferrise, R., Sanchez, B., Iglesias, A., Lesschen, J. P., Kuikman, P., Yeluripati, J., Smith, P. & Bindi, M. (2017). Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil and Tillage Research, 165, 95-106. https://doi.org/10.1016/j.still.2016.08.001
Nath, A. J., Bhattacharyya, T., Deka, J., Das, A. K. & Ray, S. K. (2016). Management effect on soil organic carbon pools in lowland rain-fed paddy growing soil. Journal of Tropical Agriculture, 53(2), 131-138.
Nelson, D. A. & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Piper, C. S. (1966). Mechanical analysis of soil by International Robinson’ s Pipette method. Soil and plant analysis.
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., Van Gestel, N., Six, J., Venterea, R. T. & Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365-368. https://doi.org/10.1038/nature13809
Porpavai, S., Devasenapathy, P., Siddeswaran, K. & Jayaraj, T. (2011). Impact of various rice based cropping systems on soil fertility. Journal of cereals and oilseeds, 2(3), 43-46.
Prabha, A. S., Arulmani, K., Senthivelu, M., Velumani, R. & Rathnam, K. S. (2019). Carbon Sequestration in Dominant Soil Series under Different Land Uses of Tamil Nadu, India. Int. J. Curr. Microbiol. App. Sci, 8(8), 2666-2674. https://doi.org/10.20546/ijcmas.2019.808.309
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L. S., Ladha, J., Madari, B., Shirato, Y., Smith, P. & Soudi, B. (2020). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 49, 350-360. https://doi.org/10.1007/s13280-019-01165-2
Sarwar, N., Farooq, O., Wasaya, A., Hussain, M., El-Shehawi, A. M., Ahmad, S., Brestic, M., Mahmoud, S. F., Zivcak, M. & Farooq, S. (2021). Integrated nitrogen management improves productivity and economic returns of wheat-maize cropping system. Journal of King Saud University-Science, 33(5), 101475. https://doi.org/10.1016/j.jksus.2021.101475
Sisti, C. P., dos Santos, H. P., Kohhann, R., Alves, B. J., Urquiaga, S. & Boddey, R. M. (2004). Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and tillage research, 76(1), 39-58. https://doi.org/10.1016/j.still.2003.08.007
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global change biology, 22(3), 1315-1324. https://doi.org/10.1111/gcb.13178
Stanford, G. & English, L. (1949). Use of the flame photometer in rapid soil tests for K and Ca.
Subbiah, B. W. & Asija, G. L. (1956). A rapid procedure for the estimation of available micronutrient in soils. Current Science, 25, 259-260.
Valkama, E., Kunypiyaeva, G., Zhapayev, R., Karabayev, M., Zhusupbekov, E., Perego, A., Schillaci, C., Sacco, D., Moretti, B., Grignani, C. & Acutis, M. (2020). Can conservation agriculture increase soil carbon sequestration? A modelling approach. Geoderma, 369, 114298. https://doi.org/10.1016/j.geoderma.2020.114298
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry, 19(6), 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
Wairiu, M. (2017). Land degradation and sustainable land management practices in Pacific Island Countries. Regional Environmental Change, 17,1053-1064. https://doi.org/10.1007/s10113-016-1041-0
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lutzow, M., Marin-Spiotta, E., Wesemael, B., Rabot, E., Lie, M., Garcia-Franco, N. & Wollschläger, U. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at variousscales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026
Yadav, G. S., Das, A., Babu, S., Mohapatra, K. P., Lal, R. & Rajkhowa, D. (2021). Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. International Soil and Water Conservation Research, 9(2), 279-290. https://doi.org/10.1016/j.iswcr.2020.12.003
Section
Research Articles

How to Cite

Sowing carbon solutions: Decoding soil characteristics and carbon fluxes in maize-dominated cropping systems of Tamil Nadu, India. (2023). Journal of Applied and Natural Science, 15(3), 1178-1187. https://doi.org/10.31018/jans.v15i3.4760