##plugins.themes.bootstrap3.article.main##

J. Susmitha R. Eswaran N. Senthil Kumar

Abstract

Genetic diversity plays a crucial role in harnessing the potential of crop genotypes for genetic improvement. It helps to identify, preserve, and utilize diverse landraces effectively. This research aimed to assess the level of genetic diversity and traits enhancing genetic variation among 46 brinjal genotypes (Solanum melongena L.) in preparation for a special breeding programme to utilize the potential landraces. Genetic divergence among 46 genotypes of brinjal for eleven characters was assessed using the D2 method. The studied genotypes were categorized into eight clusters. Cluster I with 15 genotypes was the largest followed by Cluster IV (14 genotypes), Cluster V (7 genotypes), Cluster VII (4 genotypes), Cluster III (3 genotypes), Clusters II, VI, and VIII with one genotype each. The intra-cluster D2 values ranged from 0.00 (Cluster II, VI and VII) to 103.53 (Cluster III). The inter-cluster distances varied from 117.00 to 791.17. Cluster II and Cluster VII had the greatest inter-cluster distance (791.17), followed by Cluster II and VIII (673.41), and Cluster VII and Cluster V had the smallest inter-cluster distance (117.00). Crossing genotypes in clusters with wide inter-cluster distances improves recombinant isolation in segregating generations. The three traits- number of flowers per inflorescence (23.8%), average fruit weight (17.68%) and days to first flowering (16.81%) altogether contribute to 57.8% of the total divergence. The combination of these traits could be useful to produce high-yielding climate resilient varieties from valuable landraces.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Clusters, Genetic diversity, Intra and inter-cluster distance, MultivariateaAnalysis

References
Kiranmai, C., Pullaiah, T. & Rajam, M. V. (2021). Genetically Modified Brinjal (Solanum melongena L.) and Beyond. Genetically Modified Crops: Current Status, Prospects and Challenges Volume 2, 31-52.
Ghosh, S. K. (2022). Eggplant (Solanum melongena L.) and Climate Resilient Agricultural Practices. New Delhi Publishers, New Delhi. Page 1-24. DOI: 10.30954/NDP-climatev2.4
Mahalanobis P. C. (1936). On generalized distance in statistics. Proceedings of National Institute of Science. 2, 49- 55. http://hdl.handle.net/10263/6765
Rao, C. R. (1952). Advanced statistical methods in biometrical research. John Wiley and Sons, inc., New York, 357-363.
Ravali, B., Ravinder Reddy, K., Saidaiah, P. & Shivraj, N. (2017). Genetic Diversity in Brinjal (Solanum melongena L.). Int. J Curr. Microbiol. App. Sci., 6(6), 48-54. https://doi.org/10.20546/ijcmas.2017.606.005
Islam, M. T., Chhanda, R. A., Pervin, N., Hossain, M. A. & Chowdhury, R. U. (2018). Characterization and genetic diversity of brinjal germplasm. Bangladesh Journal of Agricultural Research, 43(3), 499-512. http://dx.doi.org/10.3 329/bjar.v43i3.38396
Gurve, V. R., Waskar, D. P., Khandare, V. S. & Mehtre, S. P. (2019). Genetic diversity studies in brinjal (Solanum melongena L.). Int. J. Chemical Studies, 7(6), 730-733. http://dx.doi.org/10.13140/RG.2.2.31073.12649
Banerjee, S., Yashpal Singh Bisht & Alka Verma (2018). Genetic Diversity of Brinjal (Solanum melongena L.) in the foot hills of Himalaya. Int. J. Curr. Micro. Appl. Sci., 7(4), 3240- 3248. http://dx.doi.org/10.20546/ijcmas.2018.7 04.367
Oladosu, Y., Rafii, M. Y., Arolu, F., Chukwu, S. C., Salisu, M. A., Olaniyan, B. A., Fagbohun, I. K. & Muftaudeen, T. K. (2021). Genetic Diversity and Utilization of Cultivated Eggplant Germplasm in Varietal Improvement. Plants, 10, 1714. https://doi.org/10.3390/ plants10081714
Kaur, Sukhninder & Sidhu, Mohinder & Dhatt, Ajmer. (2021). Genetic diversity analysis through cluster constellation in Brinjal (Solanum melongena L.). Genetika, 53, 629-640. DOI: http://dx.doi.org/10.2298/GENSR2102629K
Rajan, N., Debnath, S., Dutta, A. K., Pandey, B., Singh, A. Kr., Singh, R. Kr., Singh, A. K. & Dugbakie, B. N. (2022). Elucidation of nature of gene action and estimation of combining ability effects for fruit yield improvement and yield attributing traits in brinjal landraces. Journal of Food Quality, 1-12. https://doi.org/10.1155/2022/8471202
Rakha, M., Prohens, J., Taher, D., Wu, T. H., & Solberg, S. Ø. (2021). Eggplant (Solanum melongena, S. aethiopicum and S. macrocarpon) breeding. Advances in Plant Breeding Strategies: Vegetable Crops: Volume 9: Fruits and Young Shoots, 163-203. https://doi.org/10.1007/978-3-030-66961-4_5
Zhao, H., Xianzhong Huang, Zhaoen Yang, Fuguang Li & Xiaoyang Ge (2023). Synergistic optimization of crops by combining early maturation with other agronomic traits. Trends in Plant Science, 1360 - 1385. https://doi.org/10.1016/j.tplants.2023.04.011.
Rani, M., Kumar, S. & Kumar, M. (2018). Estimation of heterosis for yield and its contributing traits in brinjal. Journal of Environmental Biology, 39(5), 710-718. https://doi.org/10.22438/jeb/39/5/mrn-609
Balasubramaniyam, K., Haripriya, K., Kumar, T. B. & Elangaimannan, R. (2020). Genetic Diversity in Brinjal (Solanum Melongena L.). Plant Archives, 20(2), 3754-3758. https://doi.org/10.51470/plantarchives.2021.v21.s 1.285
Section
Research Articles

How to Cite

Elucidation of genetic diversity through Multivariate analysis in brinjal (Solanum melongena L.) landraces for varietal improvement. (2023). Journal of Applied and Natural Science, 15(3), 1012-1017. https://doi.org/10.31018/jans.v15i3.4694