##plugins.themes.bootstrap3.article.main##

Ronald H. Révolo-Acevedo Bimael J. Quispe-Reymundo Mauro Rodríguez-Cerrón Uriel R. Quispe-Quezada Luthgardo P. Quispe-Quezada Zosimo Solano-Velarde Víctor Paredes-Atoche

Abstract

Solid waste disposal is important for environmental management for good quality of life in urban cities. Among them is the final disposal of waste in landfills. Landfills can receive tons of waste, but they must be far away from natural resources and urban areas. The research aimed to analyze the physical and biological conditions and design a geolocation map of new sanitary landfills in three urban cities in Peru (Chilca, El Tambo and Huancayo). Landsat 8 OLI/TIRS satellite imagery was used to analyze the physical (LST and Methane) and biological (NDVI and SAVI) conditions of the landfills. The geolocation of the landfills was analyzed through the relationship, intersection and discrimination between their surface criteria (soil type, current use, geology and physiography) and climatic factors (temperature, humidity and precipitation). The physical and biological conditions of the landfills were: CH4: Chilca 8.33g > Huancayo 4.76g > El-Tambo 3.17g; SAVI: Chilca 0.61 > El Tambo 0.54 > Huancayo 0.51; LST: Huancayo 26.15°C > Chilca 24.03°C > El Tambo 22.75°C; NDVI: Chilca 0.85 > Huancayo 0.81 > El Tambo 0.8. In the three cities, "natural grasslands" were considered suitable land for the new solid waste landfill site. The multiple relationship, intersection, and discrimination of surface criteria and climatic factors were categorized into five types of sustainable geolocation (very appropriate > appropriate > moderately adequate > less appropriate > inappropriate) for new solid waste landfills. It was very important to discount the influence areas (rivers and lagoons) to avoid damaging the natural resources.       

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Geolocation of new landfills, Methane, Normalized difference vegetation index (NDVI), Soil-adjusted vegetation index (SAVI), Temperature

References
Abu, H. & Shatnawi, N. (2019). Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. International Journal of Remote Sensing, 40(24), 1–17. https://doi.org/10.1080/01431161.2019.1633703
Aderoju, O. M., Dias, G. A. & Alberto, G. J. (2018). A spaced-based concept in municipal solid waste management and monitoring in developing countries. International Journal of Environmental Impacts: Management, Mitigation and Recovery, 1(4), 482–490. https://doi.org/10.2495/ei-v1-n4-482-490
Agarwal, R. & Garg, J. K. (2009). Methane emission modelling from wetlands and waterlogged areas using MODIS data. Current Science Association, 96(1), 36–40.
Akumu, C. E., Pathirana, S., Baban, S. & Bucher, D. (2010). Modeling methane emission from wetlands in North-Eastern New South Wales, Australia using Landsat ETM+. Remote Sensing, 2(5), 1378–1399. https://doi.org/10.3390/rs2051378
Al-Hanbali, A., Alsaaideh, B. & Kondoh, A. (2011). Using GIS-Based weighted linear combination analysis and remote sensing techniques to select optimum solid waste disposal sites within Mafraq City, Jordan. Journal of Geographic Information System, 03(04), 267–278. https://doi.org/10.4236/jgis.2011.34023
Azmi, M. Z. M., Mohamad Sharom, M. A. A., Md Zin, S. M., Numpang, W. & Sipit, C. A. R. (2020). Suspected unregulated dumping site detection and verification using high resolution satellite images and drone full motion video (FMV) data. ACRS 2020 - 41st Asian Conference on Remote Sensing, 2(4), 1–10.
David, V. E., John, Y. & Hussain, S. (2020). Rethinking sustainability: a review of Liberia’s municipal solid waste management systems, status, and challenges. Journal of Material Cycles and Waste Management, 22(5), 1299–1317. https://doi.org/10.1007/s10163-020-01046-x
Devesa, M. & Brust, A. (2021). Mapping illegal waste dumping sites with neural-network classification of satellite imagery. KDD Humanitarian MappingWorkshop - Cornell University, 1(2), 14–18. https://doi.org/10.48550/arXiv.2110.08599
Ejaz, N., Akhtar, N., Nisar, H. & Ali Naeem, U. (2010). Environmental impacts of improper solid waste management in developing countries: A case study of Rawalpindi City. WIT Transactions on Ecology and the Environment, 142(2), 379–387. https://doi.org/10.2495/SW100351
Ekeu-wei, I. T., Azuma, K. I. & Ogunmuyiwa, F. B. B. (2018). Assessment of environmental impact of solid waste dumpsites using remote sensing. Nigerian Journal of Technology, 37(1), 275–286. https://doi.org/10.4314/njt.v37i1.36
Gill, J., Faisal, K., Shaker, A. & Yan, W. Y. (2019). Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images. Waste Management and Research, 37(4), 386–393. https://doi.org/10.1177/0734242X18821808
Guimarães, C. C., Barbosa, A. M. & Gandolfo, O. C. B. (2019). Visual interpretation of satellite and aerial images to identify and study the evolution of inadequate urban waste disposal sites. Detritus - Multidisciplinary Journal for Waste Resources and Residues, 6(June), 85–95. https://doi.org/10.31025/2611-4135/2019.13821
Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(1), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
Inglezakis, V. J., Moustakas, K., Khamitova, G., Tokmurzin, D., Sarbassov, Y., Rakhmatulina, R., Serik, B., Abikak, Y. & Poulopoulos, S. G. (2018). Current municipal solid waste management in the cities of Astana and Almaty of Kazakhstan and evaluation of alternative management scenarios. Clean Technologies and Environmental Policy, 20(3), 503–516. https://doi.org/10.1007/s10098-018-1502-x
Jinadasa, A. R. P., Munasinghe, M., Pathirana, P., Perera, W., Sandamalee, B., Sandamalee, B., Wickramasinghe, A., Wijekoon, T. M. P. & Mubeenudeen, M. M. M. (2015). Design an Effective Solid Waste Management Model for Sri Lankan Context. University of Kelaniya - Sri Lanka, 2(4), 1–20.
Kabite, G., Suryabhagavan, K. V. & Sulaiman, H. (2012). GIS-Based Solid Waste Landfill Site Selection in Addis Ababa, Ethiopia. International Journal of Ecology and Environmental Sciences, 38(3), 59–72.
Krishna, V., Pandey, K. & Karnatak, H. (2017). Geospatial multicriteria approach for solid waste disposal site selection in Dehradun city, India. Current Science, 112(3), 549–559. https://doi.org/10.18520/cs/v112/i03/549-559
Mahmood, K., Adila, S. & Nawaz, M. (2016). Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Management, 4(2), 1–11. https://doi.org/10.1016/j.wasman.2016.04.020
Mussa, A. & Suryabhagavan, K. V. (2021). Solid waste dumping site selection using GIS-based multi-criteria spatial modeling: a case study in Logia town, Afar region, Ethiopia. Geology, Ecology, and Landscapes, 5(3), 1–13. https://doi.org/10.1080/24749508.2019.1703311
Nazari, R., Alfergani, H., Haas, F., Karimi, M. E., Fahad, M. G. R., Sabrin, S., Everett, J., Bouaynaya, N. & Peters, R. W. (2020). Application of satellite remote sensing in monitoring elevated internal temperatures of landfills. Applied Sciences (Switzerland), 10(19), 1–20. https://doi.org/10.3390/app10196801
Ottavianelli, G., Hobbs, S., Smith, R. & Bruno, D. (2005). Assessment of hyperspectral and SAR remote sensing for solid waste landfill management. European Space Agency, (Special Publication) ESA SP, 593, 103–110.
Qureshi, S., Shorabeh, S. N., Samany, N. N., Minaei, F., Homaee, M., Nickravesh, F., Firozjaei, M. K. & Arsanjani, J. J. (2021). A new integrated approach for municipal landfill siting based on urban physical growth prediction: A case study mashhad metropolis in Iran. Remote Sensing, 13(5), 1–22. https://doi.org/10.3390/rs13050949
Richter, A., Kazaryan, M., Shakhramanyan, M., Nedkov, R., Borisova, D., Stankova, N., Ivanova, I. & Zaharinova, M. (2017). Estimation of thermal characteristics of waste disposal sites using landsat satellite images. Comptes Rendus de L’Academie Bulgare Des Sciences, 70(2), 253–262.
Rouse, J. W., Hass, R. H., Schell, J. A. & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., 1(A), 309–317. https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf
Sadeghi-Niaraki, A., Jelokhani-Niaraki, M. & Choi, S. M. (2020). A volunteered geographic information-based environmental decision support system for waste management and decision making. Sustainability (Switzerland), 12(15), 1–21. https://doi.org/10.3390/su12156012
Sernaque, F. & Auccahuasi, W. (2020). Low-cost methodology for monitoring municipal land fills, based on the use of satellite images. Palarch’s Journal of Archaeology of Egypt/Egyptology, 17(6), 5591–5598.
Shahabi, H., Keihanfard, S., Ahmad, B. Bin & Amiri, M. J. T. (2014). Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environmental Earth Sciences, 71(9), 4221–4233. https://doi.org/10.1007/s12665-013-2816-y
Shaker, A. & Yan, W. Y. (2010). Trail road landfill site monitoring using multioral landsat satellte data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38(2), 1–6.
Shevchuk, O. V., Azimov, O. T. & Tomchenko, O. V. (2021). Remote sensing monitoring of the landfill sites as a factor of adverse environmental impact. 20th International Conference Geoinformatics: Theoretical and Applied Aspects, 2(May 2021), 1–7. https://doi.org/10.3997/2214-4609.20215521054
Sun, M., Zhang, Y., Ma, J., Yuan, W., Li, X. & Cheng, X. (2017). Satellite data based estimation of methane emissions from rice paddies in the Sanjiang Plain in northeast China. PLoS ONE, 12(6), 1–16. https://doi.org/10.1371/journal.pone.0176765
Sun, W., Wang, X., DeCarolis, J. & Barlaz, M. (2019). Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills. Waste Management, 91, 120–127. https://doi.org/10.1016/j.wasman.2019.05.004
Tello Lozada, D., Peña Choco, K. T. & Hernández Torres, L. F. (2020). Estimation of methane emission (CH4) in the Presidente landfill through satellite images. Revista de Topografía Azimut, 11(2), 11–17.
Vaverková, M. D. (2019). Landfill impacts on the environment— review. Geosciences (Switzerland), 9(10), 1–16. https://doi.org/10.3390/geosciences9100431
Vishnuvardhan, K. & Elangovan, K. (2020). Application of remote sensing and GIS for identifying suitable sites for solid waste disposal in Erode Corporation, Tamil Nadu, India. Indian Journal of Geo-Marine Sciences, 59(9), 1479–1485.
Yan, W. Y., Mahendrarajah, P., Shaker, A., Faisal, K., Luong, R. & Al-Ahmad, M. (2014). Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites. Environmental Monitoring and Assessment, 186(12), 8161–8173. https://doi.org/10.1007/s10661-014-3995-z
Yang, W., Fan, B. & Desouza, K. C. (2019). Spatial-temporal effect of household solid waste on illegal dumping. Journal of Cleaner Production, 227, 313–324. https://doi.org/10.1016/j.jclepro.2019.04.173
Шевякіна, Н. А., Трофимчук, О. М., Клименко, В. І. & Красовський, Г. Я. (2019). Методи і моделі космічного моніторингу зон впливу полігонів твердих побутових відходів на довкілля. Космическая Наука И Техника - Дослідження Землі з Космосу, 25(1), 62–72. https://doi.org/10.15407/knit2019.01.062
Section
Research Articles

How to Cite

Analyzing solid waste landfills using satellite imagery and designing new landfill reception areas . (2023). Journal of Applied and Natural Science, 15(2), 732-740. https://doi.org/10.31018/jans.v15i2.4456