##plugins.themes.bootstrap3.article.main##

Drashya Gautam Roopa Rani Samal Sarita Kumar Sunita Hooda Neelu Dheer

Abstract

Aedes-borne diseases are of worldwide concern due to the lack of effective medicine and vaccination. Frequent use of chemical intervention has developed insecticide resistance in mosquitoes and posed health risks to humans and the environment, necessitating an effective and safer intervention. Graphene Oxide (GO) is an efficient material that can absorb pesticide particles and release pesticide macromolecules in a controlled manner. With the proposition that magnetic graphene oxide (MGO)-based nanoformulations can be an eco-safe and effective material for pesticide conjugation, the present study synthesized these nanoformulations conjugated with a pyrethroid, deltamethrin (DL) through chemical co-precipitation method. The formulations were validated using biophysical techniques and investigated for their efficacy against Aedes aegypti. The X-ray diffraction (XRD) pattern of nanocomposites showed six intense diffraction peaks of Fe3O4 particles, X-ray photoelectron spectroscopy (XPS) displayed the C1s, O1s, and Fe2p photoelectron lines in the MGO nanocomposite's spectra, while Field Emission Scanning Electron Microscopy (FESEM) revealed the small size and uniformity of Fe3O4 nanoparticles on the GO surface. The individual MGO and DL, as well as MGO-DL binary combinations (1:1, 1:2, and 1:3) imparted significant larval toxicity, demonstrating 30%, 50%, and 85% CTC (Co-toxicity coefficient), respectively. High corresponding Synergistic factor (SF) values indicated significant synergism increasing with the rise in deltamethrin proportion. The MGO-DL combinations also increased irritancy and flight response in adults, the notable synergistic effects imparted by the 1:3 combination. The effective actions of MGO-DL nanoformulations against mosquitoes suggest their possible use for mosquito management as a safer and more operative intervention.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Aedes aegypti, Contact irritancy, Deltamethrin, Larvicidal, Magnetic Graphene oxide, Nanoformulation

References
Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18,265-267.
Chen, J., Yao, B., Li, C. & Shi, G. (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 64,225-229. https://doi.org/10.1016/j.carbon.2013.07.055.
Dai, P.L., Wang, Q., Sun, J.H., Liu, F., Wang, X., Wu, Y.Y. & Zhou, T. (2010) Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity, growth, and development of the honeybee Apis mellifera ligustica. Environ. Toxicol. Chem. 29,644-649.
Gautam, D., Lal, S. & Hooda, S. (2018) Magnetic graphene oxide for adsorption of organic dyes from aqueous solution. In American Institute of Physics Conference Series 1953. 1,030282.
Gautam, D., Lal, S. & Hooda, S. (2020) Adsorption of rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. J. Nanosci. Nanotechnol.  20, 2939-2945. https://doi.org/10.1166/jnn.2 020.17442.
Ghiasi, A., Malekpour, A. & Mahpishanian, S. (2020) Metal-organic framework MIL101 (Cr)-NH2 functionalized magnetic graphene oxide for ultrasonic-assisted magnetic solid phase extraction of neonicotinoid insecticides from fruit and water samples. Talanta. 217, p.121120. https://doi.org/10.1016/j.talanta.2020.121120
Gupta, A., Samal, R.R. & Kumar, S. (2021a) Physiological and reproductive fitness cost in Aedes aegypti on exposure to toxic xenobiotics in New Delhi, India. J. Appl. Nat. Sci. 13, 71-78. https://doi.org/10.31018/jans.v13i1.2470.
Gupta, D., Samal, R.R., Gautam, D., Hooda, S. & Kumar, S. (2021b) Multifunctional activity of graphene oxide-based nanoformulation against the disease vector, Aedes aegypti. J. Appl. Nat. Sci. 13,1265-1273. https://doi.org/1 0.31018/jans.v13i4.3018.
Hu, P., Zhu, L., Zheng, F., Lai, J., Xu, H. & Jia, J. (2021) Graphene oxide as a pesticide carrier for enhancing fungicide activity against Magnaporthe oryzae. New. J. Chem. 45,2649-2658. https://doi.org/10.1039/D0NJ047 21J
Kalyanasundaram, M. & Das, P.K. (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian. J. Med. Res. 82,19-23.
Lingamdinne, L.P., Koduru, J.R. & Karri, R.R. (2019). A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manage. 231, 622-634. https://doi.org/10.1016/j.jenvman.2018.10.063
Lu, Z., Zhang, C., Gao, Y., Wang, W., Lin, J. & Du, F. (2021) Simple, effective, and energy-efficient strategy to construct a stable pesticide nanodispersion. ACS Agric. Sci. Technol. 4, 329-337. https://doi.org/10.1021/acsagscitech.1c00018
Monteiro, R.A., Camara, M.C, de Oliveira, J.L., Campos, E.V.R., Carvalho, L.B., de Freitas Proenca, P. L., Guilger-Casagrande, M., Lima, R., do Nascimento, J., Gonçalves, K.C & Polanczyk, R.A. (2021). Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. J. Hazard. Mater. 417,p.126004. https://doi.org/10.1016/j.jhazmat.2021.126004.
Ray. D.E (2003) Toxicology of pyrethrins and synthetic pyrethroids. Pestic. Toxicol. Int. Regulation. 129-158.
Samadi, S. & Abbaszadeh, M. (2017). Synthesis and characterization of MgO/PEG/GO nanocomposite and its application for removal of copper (II) from aquatic media. Bull. Soc. R. Sci. 86,271-280. 10.25518/0037-9565.6709.
Samal, R.R., Panmei, K., Lanbiliu, P. & Kumar, S. (2022). Metabolic detoxification and ace-1 target site mutations associated with acetamiprid resistance in Aedes aegypti L. Front. Physiol.13: p.1677. https://doi.org/10.3389/fphys.2022.988907.
Samal, R.R. & Kumar, S. (2021) Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int. J. Trop. Insect. Sci. 41,809-820. https://doi.org/10.1007/s42690-020-00271-z.
Sha, O., Yao, J., Zhu, Y., Liu, H., Zhou, Q. & Chen, L. (2022) Facile preparation of magnetic graphene oxide and its application in magnetic dispersive solid-phase extraction of insecticides from vegetable samples.  J. Anal. Chem. 77,748-758. https://doi.org/10.1134/S1061934822060120
Trisyono, A. & Whalon, M.E. (1999) Toxicity of neem applied alone and in combinations with Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 92< 1281-1288. . https://doi.org/10.1093/jee/92.6.1281.
Wang, X., Xie, H., Wang, Z. & He, K. (2019a). Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids. Surf. B. 173,632-638. https://doi.org/10.1016/j.colsurf b.20 18.10.010.
Wang, X., Xie, H., Wang, Z., He, K. & Jing, D. (2019b). Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ. Sci. Nano. 6,75-84. 10.1039/C8EN00902C. 
Warikoo, R., Ray, A., Sandhu, J.K., Samal, R., Wahab, N & Kumar, S. (2012) Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian. Pac. J. Trop. Biomed. 2,152-155. https://doi.org/10.1016/S2221-1691(11)60211-6
WHO (World Health Organization) (2016) Monitoring and managing insecticide resistance in Aedes mosquito populations. http://apps.who.int/iris/bitstream/ handle/1066 5/204588/WHO_ZIKV_VC_16.1_eng.pdf?sequence=2
Section
Research Articles

How to Cite

One pot chemical co-precipitation preparation of magnetic graphene oxide-deltamethrin nanoformulations for management of Aedes aegypti. (2023). Journal of Applied and Natural Science, 15(1), 194-202. https://doi.org/10.31018/jans.v15i1.4305