Abhishek Dutta Wanida Jinsart Utpal Chandra Das Gautam Dutta


Delhi was one of India's COVID-19 hotspots, with significant death rates during the year 2021. This study looked at the link between COVID-19 cases in Delhi, and key meteorological variables. The study found that COVID-19 cases during the second wave (P2-March- May 2021) were much higher than during the first wave (P1-Jan-Feb 2021) in Delhi. During P1 (Jan-Feb 2021) the mean PM2.5, PM10, NO2 and CO concentrations were greater than that of P2 (March-May 2021) while the reverse happened for SO2 and O3.  Spearman correlation test indicated that COVID-19 cases maintained a significant positive correlation with the high temperature of P2 (March-May 2021) and high humidity of P1 (Jan-Feb 2021) in line with the accepted notion that COVID-19 transmitted favourably in hot and humid climates.  The Multilayer perceptron (MLP) model indicated that COVID-19 spread was supported by air pollutants and climate variables like PM2.5, NO2, RH, and WS in P1(Jan-Feb 2021) and PM2.5 and O3 in P2 (March-May 2021).  Owing to chemical coupling, across all six monitoring stations, O3 maintained an inverse relationship with NO2 throughout the COVID-19 phases in Delhi.  The city dwellers had health risks also due to PM pollution at varying degrees, indicated by high hazard quotients (HQs), requiring lowering of air pollution concentrations on an urgent basis.




COVID-19, Delhi, Air pollution, Hot spots, Respiratory infection, Spatial regression

Ali, N. & Islam, F. (2020). The Effects of Air Pollution on COVID-19 Infection and Mortality-A Review on Recent Evidence. Frontiers in Public Health. 8, 580057. doi: 10.3389/fpubh.2020.580057.
Andrews, M. A., Areekal, B., Rajesh, K.R., Krishnan, J., Suryakala, R., Krishnan, B., Muraly, C.P. & Santhosh, P.V. (2020). First confirmed case of COVID-19 infection in India: A case report. Indian Journal of Medical Research, 151,490-492. DOI: 10.4103/ijmr.IJMR_2131_20.
Analitis, A., Katsouyanni, K., Dimakopoulou, K., Samoli, E., Nikoloulopoulos, A.K., Petasakis, Y., Touloumi, G., Schwartz, J., Anderson, H.R., Cambra, K., Forastiere, F., Zmirou, D., Vonk, J.M., Clancy, L., Kriz, B., Bobvos, J. & Pekkanen, J. (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology. 17(2): 230-3. doi: 10.1097/01.ede.0000199439.5 7655.6b.
ARAI-TERI (Automotive Research Association of India and The Energy and Resources Institute). (2018). Source apportionment of PM2.5 & PM10 of Delhi NCR for identification of major sources. Retrieved from https://www.teriin.org/project/source-apportionment-pm25- pm10-delhi-ncr-identification-major-sources.
Beelen, R., Hoek, G., Brandt, P. A. V. D., Goldbohm, R. A., Fischer, P. & Schouten, L. J. (2008). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR Study). Environmental Health Perspectives, 116(2), 196–202. doi: 10.1289/ehp.10767.
Berman, J.D. & Ebisu, K. (2020). Changes in U.S. air pollution during the COVID-19 pandemic. Science of the Total Environment. 739:139864. doi: 10.1016/j.scitotenv.2020.139864.
Brunekreef, B. & Holgate, S.T. (2002) Air pollution and health. Lancet. 360(9341), 1233-42. doi: 10.1016/S0140-6736(02)11274-8.
Bashir, M.F., Ma, B., Bilal, Komal, B., Bashir, M.A., Tan, D. & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of the Total Environment. 728:138835. doi: 10.1016/j.scitotenv.2020.138835.
Cacciapaglia, G., Cot, C. & Sannino, F. (2020). Second wave COVID-19 pandemics in Europe: a temporal playbook. Scientific Reports, 10(1), 1-8. https://doi.org/10.1038/ s41598-020-72611-5
Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Middleton, P.& Wang, T. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research: Atmospheres, 97, 6037-6055. https://doi.org/10.1029/91JD03014.
Chen, Y., Wild, O., Ryan, E., Sahu, S. K., Lowe, D., Archer-Nicholls, S., Wang, Y., McFiggans, G., Ansari, T., Singh, V., Sokhi, R. S., Archibald, A. & Beig, G. (2020). Mitigation of PM2.5 and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period, Atmospheric Chemistry and Physics, 20, 499–514, https://doi.org/10.5194/acp-20-499-2020.
Cheong, K.H., Ngiam, N.J., Morgan, G.G., Pek, P.P., Tan, B.Y., Lai, J.W., Koh, J.M., Ong, M.E.H. & Ho, A.F.W. (2019). Acute Health Impacts of the Southeast Asian Transboundary Haze Problem-A Review. International Journal of Environmental Research and Public Health. 16(18), 3286. doi: 10.3390/ijerph16183286.
Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C.A. 3rd., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L. & Forouzanfar, M.H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet. 389(10082):1907-1918. doi: 10.1016/S0140-6736(17)30505-6.
Cousins, S. (2020). Afghanistan braced for second wave of COVID-19. The Lancet, 396(10264), 1716-1717. https://doi.org/10.1016/S0140-6736(20)32529-0.
COVID-19 pandemic in India, Retrieved from https://en.wikipedia.org/wiki/COVID-19_pandemic_in_India. (accessed on 26.05.2021).
CPCB. Central Pollution Control Board. (2009). National Ambient Air Quality Standards (NAAQS)-1994, Retrieved from https://cpcb.nic.in/uploads/National_Ambient_Air_ Quality_Standards.pdf. (accessed on 26.05.2021).
CPCB. Central Pollution Control Board. (2019). Air quality bulletin. National Air Quality Index (January to December). Retrieved from https://cpcb.nic.in/manual-monitoring/. (accessed on 26.05.2021).
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L. & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295(10), 1127–1134. https://doi.org/10.1001/jama.295.10.1127.
Dutta, A. & Jinsart, W. (2021 a). Risks to health from ambient particulate matter (PM2.5) to the residents of Guwahati city, India: An analysis of prediction model, Human and Ecological Risk Assessment: An International Journal, 27(4), 1094-1111, DOI: 10.1080/10807039.2020.1807 902.
Dutta, A. & Jinsart, W. (2021 b). Air Quality, Atmospheric Variables and Spread of COVID-19 in Delhi (India): An Analysis. Aerosol and Air Quality Research. 21, 200417. https://doi.org/10.4209/aaqr.2020.07.0417.
Dutta, A. & Jinsart, W. (2021 c). Air Pollution in Indian Cities and Comparison of MLR, ANN and CART Models for Predicting PM10 Concentrations in Guwahati, India. Asian Journal of Atmospheric Environment, 15(1), 1-26: https://doi.org/10.5572/AJAE.2020.131
Dutta, A. & Jinsart, W. (2021 d). Assessing short-term effects of ambient air pollution on respiratory diseases in Guwahati, India with the application of the generalized additive model, Human and Ecological Risk Assessment: An International Journal, 27(7), 1786-1807, DOI: 10.1080/10807039.2021.1908113.
Dutta, A. & Jinsart, W. (2022). Air pollution in Delhi, India: It's status and association with respiratory diseases. PLoS One. 17(9): e0274444. doi: 10.1371/journal.pone.027 4444.
Fattorini, D. & Regoli, F. (2020). Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environmental Pollution. 264,114732. doi: 10.1016/j.envpol.2020.114732.
Ghude, S.D., Jain, S.L., Arya, B.C., Beig, G., Ahammed, Y.N., Kumar, A. & Tyagi, B. (2009). Ozone in ambient air at a tropical megacity Delhi: Characteristics, trend and cumulative ozone exposure indices. Journal of Atmospheric Chemistry, 60, 237–252. https://doi.org/10.1007/s10874-009-9119-4.
Guttikunda, S.K., Nishadh, K.A. & Jawahar, P. 2019. Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27, 124–141. https://doi.org/10.1016/j.uclim.2018.11.005.
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F. & Zhang, X. (2011). Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research 11, 128–139. https://doi.org/ 10.4209/aaqr.2010.07.0055.
Hara, K., Homma, J., Tamura, K., Inoue, M., Karita, K. & Yano, E. (2013). Decreasing trends of suspended particulate matter and PM2.5 concentrations in Tokyo, 1990-2010. Journal of the Air and Waste Management Association. 63(6), 737–748. doi:10.1080/10962247.2013.782372.
Krewski, D., Jerrett, M., Burnett, R.T., Ma, R., Hughes, E., Shi, Y., Turner, M.C., Pope, C.A. 3rd, Thurston, G., Calle, E.E., Thun, M.J., Beckerman, B., DeLuca, P., Finkelstein, N., Ito, K., Moore, D.K., Newbold, K.B., Ramsay, T., Ross, Z., Shin, H. & Tempalski, B. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research Report of Health Effects Institute, 140:5-114.
Lahiri, A., Jha, S. S., Bhattacharya, S., Ray, S. & Chakraborty, A. (2020). Effectiveness of preventive measures against COVID-19: A systematic review of In Silico modeling studies in indian context. Indian Journal of Public Health, 64(Supplement), S156-S167. https://doi.org/10.4103/ijph. IJPH_464_20.
Looi, M. K. (2020). Covid-19: Is a second wave hitting Europe? The BMJ, 371: m4113. https://doi.org/10.1136/bmj.m4113.
Lu, X., Zhang, L. & Shen, L. (2019). Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Current Pollution Reports, 5, 238–260. https://doi.org/10.1007/s40726-019-00118-3.
Meo, S.A., Ahmed Alqahtani, S., Saad Binmeather, F., Abdulrhman AlRasheed, R., Mohammed Aljedaie, G. & Mohammed Albarrak, R. (2022). Effect of environmental pollutants PM2.5, CO, O3 and NO2, on the incidence and mortality of SARS-COV-2 in largest metropolitan cities, Delhi, Mumbai and Kolkata, India. Journal of King Saud University- Science. 34(1), 101687. doi: 10.1016/j.jksus.2021.101687.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O. & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmospheric Chemistry and Physics, 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015.
Sharma, S., Zhang, M., Anshika, G.J., Zhang, H. & Kota, S.H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728: 138–878. https://doi.org/10.1016/j.scitotenv.2020.138878.
Tayech, A., Mejri, M. A., Makhlouf, I., Mathlouthi, A., Behm, D. G. & Chaouachi, A. (2020). Second wave of COVID-19 global pandemic and athletes’ confinement: Recommendations to better manage and optimize the modified lifestyle. International Journal of Environmental Research and Public Health, 17(22), 8385. https://doi.org/10.3390/ijerph17228385.
USEPA. (2013). Human Health Risk Assessment., Retrieved from http://bit.ly/2c3fznR. (accessed April 28, 2021).
USEPA. (2016). Human health risk assessment. USEPA, Washington, D.C.;. Retrieved from http://www.epa.gov/risk/health-risk.html. (accessed April 28, 2021).
Vaid, S., McAdie, A., Kremer, R., Khanduja, V. & Bhandari, M. (2020). Risk of a second wave of Covid-19 infections: using artificial intelligence to investigate stringency of physical distancing policies in North America. International Orthopaedics, 44(8): 1581-1589. https://doi.org/10.1007/ s00264-020-04653-3
WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int/. (accessed on 26.05.2021).
WHO (2016). Global health observatory data, Retrieved from https://apps.who.int/gho/data/.(accessed on 26.0 5.2021).
WHO (2018). Global ambient air quality database (update 2018). Retrieved from https://www.who.int/airpollution/data/cities. (accessed on 26.05.2021).
Xu, S. & Li, Y. (2020). Beware of the second wave of COVID19. The Lancet, 395(102233): 1321-1322. https://doi.org/ 10.1016/S0140-6736(20)30845-X.
Zanobetti, A., Franklin, M., Koutrakis, P. & Schwartz, J. (2009). Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environmental Health. 8, 58. https://doi.org/10.1186/1476-069X-8-58.
Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19’, The Proceedings of the National Academy of Sciences (PNAS), 117(26), 14857-14863. https://doi.org/10.1073/pnas.2009 637117
Research Articles

How to Cite

An empirical analysis of Delhi’s air quality throughout different COVID-19 pandemic waves . (2023). Journal of Applied and Natural Science, 15(1), 325-339. https://doi.org/10.31018/jans.v15i1.4271