Comparison of membrane immobilized zero-valent iron nanoparticles for RED ME4BL azodye degradation
Article Main
Abstract
Textile industries are hailed as one of the major environmental polluters in the world, owing to their release of undesirable dye effluents. Synthetic dyes do not adhere to fabric firmly and are released into the aquatic ecosystem as effluent. Consequently, the consistent release of wastewater from numerous textile industries without previous treatment has detrimental effects on the ecosystem and human health. Treatment methods currently being used fail to degrade the dye effluents and have their own shortcomings. Immobilized nanoparticles have been extensively studied for dye remediation because of their many advantages over conventional methods. The present study aimed to compare the efficiency of two different carrier matrices [namely Poly(vinylidene fluoride) and Polyurethane] for iron nanoparticle and their decolorization activity on an azo dye (RED ME4BL). Scanning Electron Microscopy was carried out to show the deposition of iron nanoparticles on the membrane. The reaction kinetics of the bare nanoparticles were compared with that of the immobilized nanoparticles, and all were found to follow pseudo-second-order kinetics. Polyurethane immobilized iron nanoparticles showed a significant degradation of RED ME4bl than the Poly(vinylidene fluoride) immobilized iron and bare nanoparticles. This paper also demonstrates a relatively newer method for nanoparticle immobilisation using the synthetic polyurethane form.
Article Details
Article Details
Azo dye, Dye degradation, Polyurethane, Poly(vinylidene fluoride), REDME4BL, Zerovalent iron nanoparticles
Alani, O. A., Ari, H. A., Offiong, N. A. O., Alani, S. O., Li, B., Zeng, Q. & Feng, W. (2021). Catalytic Removal of Selected Textile Dyes Using Zero-Valent Copper Nanoparticles Loaded on Filter Paper-Chitosan-Titanium Oxide Heterogeneous Support. J. Environ. Polym. Degrad. 29(9), 2825 – 2839.
Alkaykh, S., Mbarek, A. & Ali-Shattle, EE. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 6(4), e03663.
Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y. & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231, 113160.
Alyarnezhad, S., Marino, T., Parsa, J.B., Galiano, F., Ursino, C., Garcìa, H., Puche, M. & Fig.oli, A. (2020). Polyvinylidene Fluoride-Graphene Oxide Membranes for Dye Removal under Visible Light Irradiation. Polymers. 12(7):1509. https://doi.org/10.3390/polym12071509.
Arancibia-Miranda, N., Baltazar, S. E., García, A., Muñoz-Lira, D., Sepúlveda, P., Rubio, M. A. & Altbir, D. (2016). Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 301, 371.
Atmianlu, P.A., Badpa, R., Aghabalaei, V. & Baghdadi, M. (2021). A review on the various beds used for immobilization of nanoparticles: Overcoming the barrier to nanoparticle applications in water and wastewater treatment. J. Environ. Chem. Eng. 9(6), 106514.
Badvi, K. & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J. Clean. Prod. 280(2), 124518.
Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 6(1), e03271. doi: 10.1016/j.heliyon.2020.e03271.
Chekli, L., Zhao, Y. X., Tijing, L. D., Phuntsho, S., Donner, E., Lombi, E., Gao, B. Y. & Shon, H. K. (2014). Aggregation behaviour of engineered nanoparticles in natural waters: Characterising aggregate structure using on-line laser light scattering. J. Hazard. Mater. 284, 190-200.
Chen, J., Yu, Y., Chen, J., Li, H., Ji, J. & Liu, D. (2015). Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites. Appl. Clay Sci. 115, 230-237.
Chen, H., Cao, Y., Wei, E., Gong, T. & Xian, Q. (2016). Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere. 146, 32.
Cho, Y. & Choi, S. I. (2010). Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere. 81(7), 940-5. doi: 10.1016/j.chemosphere.2010.07.054.
Crini, G. & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17, 145–155.
Domènech, B., Ziegler, K., Vigués, N., Olszewski, W., Marini, C., Mas, J., Muñoz, M., Muraviev, D.N. & Macanás, J. (2016). Polyurethane foams doped with stable silver nanoparticles as bactericidal and catalytic materials for the effective treatment of water. New J. Chem. 40, 3716-3725.
Dube, S. T., Moutloali, R. M. & Malinga, S. P. (2020). Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe-Cu bimetallic nanoparticles for water treatment. J. Environ. Chem. Eng. 8(4), 103962.
Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S.H. & Elshoubaky, G.A. (2021). A critical review of biosorption of dyes, heavy metals, and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology. 4, 100209.
Esbati, A.H. & Irani, S. (2018). Effect of functionalized process and CNTs aggregation on fracture mechanism and mechanical properties of polymer nanocomposite. Mech. Compos. Mater. 118, 106-119.
Gabriel, E. M. & Gillberg, G. E. (1993). In situ modification of microporous membranes. J. Appl. Polym. Sci. 48, 2081–2090.
Gui, M., Ormsbee, L.E. & Bhattacharyya, D. (2013). Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation. Ind. Eng. Chem. Res. 52(31), 10430-10440.
He, Z., Mahmud S., Yang, Y., Zhu, L., Zhao, Y., Zeng, Q., Xiong, Z. & Zhao, S. (2020). Polyvinylidene fluoride membrane functionalized with zero valent iron for highly efficient degradation of organic contaminants. Sep. Purif. Technol. 250, 117266.
Inderyas, A., Bhatti, I. A., Ashar, A., Ashraf, M., Ghani, A., Yousaf, M., Mohsin, M., Ahmad, M., Rafique, S., Masood, N. & Iqbal, M. (2020). Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irradiation. Mater. Res. Express. 7(2), 5033.
Jadaa, W., Prakash, A. & Ray, A. K. (2021). Photocatalytic Degradation of Diazo Dye over Suspended and Immobilized TiO2 Catalyst in Swirl Flow Reactor: Kinetic Modeling. Processes. 9, 1741.
Jadoun, S., Arif, R., Jangid, N. K. & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 19, 355–374.
Kalra, A. & Gupta, A. (2021). Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Mater. Today: Proc. 36(3), 89-696.
Kgatle, M., Sikhwivhilu, K., Ndlovu, G. & Moloto, N. (2021). Degradation Kinetics of Methyl Orange Dye in Water Using Trimetallic Fe/Cu/Ag Nanoparticles. Catalysts. 11, 428.
Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications, and toxicities. Arab. J. Chem. 12(7), 908-931.
Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B. & Fernando, Q. (2000). Field application of palladized iron for the dechlorination of trichloroethene. J. Waste Manag. 20(8), 687-694.
Krishnan, S.K., Subbiah, K., Kalivel, P. & Subramanian, K. (2021). Degradation of azo dye RED ME4BL treated with immobilised bimetallic zero-valent iron nanoparticles doped with palladium. Int J Environ Anal Chem. DOI: 10.1080/03067319.2021.2007381.
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3(2), 275-290.
Li, P., Wang, Y., Huang, H., Ma, S., Yang, H. & Xu, Z. (2021). High efficient reduction of 4-nitrophenol and dye by filtration through Ag NPs coated PAN-Si catalytic membrane. Chemosphere. 263, 127995.
Liang, J., Ning, X., Kong, M., Liu, D., Wang, G., Cai, H., Sun, J., Zhang, Y., Lu, X. & Yuan, Y. (2017). Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environ. Pollut. 231(1), 115-122.
Mehta, M., Sharma, M., Pathania, K., Jena, P. K. & Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: a mini review. Environ. Sci. Pollut. Res. 28, 49434–49446.
Meyer, D. E., Wood, K., Bachas, L. G. & Bhattacharyya, D. (2004). Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environ Prog. 23, 232–242. doi.org/10.1002/ep.10031.
Mohtar, S. S., Aziz, F., Ismail, A. F., Sambudi, N. S., Abdullah, H., Rosli, A. N. & Ohtani, B. (2021). Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts. 11, 1160.
Mukherjee, R., Kumar, R., Sinha, A., Lama, Y. & Saha, A.K. (2016). A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit. Rev. Environ. Sci. Technol. 46(5), 443-466. DOI: 10.1080/10643389.2015.1103832.
Naseem, T. & Durrani, T. (2021). The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environ. Toxicol. Chem. 3, 59-75.
Pinheiro, L.R.S., Gradíssimo, D.G., Xavier, L.P. & Santos, A.V. (2022). Degradation of Azo Dyes: Bacterial Potential for Bioremediation. Sustainability. 14, 1510. https:// doi.org/10.3390/su14031510
Raman C.D. & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage. 15(177), 341-55.
Riaz, M., Khan, N., Khan, S., Saeeduddinh., Ahmad, Z., Khan, M. A., Iqbal, M., Hemeg, H. A., Bakhsh, E. M. & Khan, S. B. (2022). Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. J. Mol. Liq. 359, 119246.
Saravanan, A., Senthil Kumar, P., Karishma, S., Vo, D. N., Jeevanantham, S., Yaashikaa, P. R. & George, C.S. 2021. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. 264(2), 128580.
Sarvajith, M., Reddy, G. K. K. & Nancharaiah, Y.V. (2018). Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors, J. Hazard. Mater. 342, 536-543.
Satapanajaru, T., Chompuchan, C., Suntornchot, P. & Pengthamkeerati. P. (2011). Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment. Desalination. 266(1-3), 218-230. doi.org/10.1016/j.desal.2010.08.030.
Satria, M. & Saleh, T.A. (2022). Effect of loading various nanoparticles on superhydrophobic/superoleophilic stearic acid-modified polyurethane foams for oil-water separation. J. Environ. Chem. Eng. 10(6), 108577.
Shanker, U., Rani, M. & Jassal, V. (2017). Degradation of Hazardous Organic Dyes in Water by Nanomaterials. Environ. Chem. Lett. 15, 623–642.
Shin, J. H., Yang, J. E., Park, J. E., Jeong, S. W., Choi, S. J., Choi, Y. J. & Jeon, J. (2022). Rapid and Efficient Removal of Anionic Dye in Water Using a Chitosan-Coated Iron Oxide-Immobilized Polyvinylidene Fluoride Membrane. ACS Omega. 7(10), 8759-8766.
Sikhwivhilu, K. & Moutloali, R. M. (2015). Functionalized PVDF Membrane-immobilized Fe/Ni Bimetallic Nanoparticles for Catalytic Degradation of Methyl Orange Dye: A Comparative Study. Mater. Today: Proc. 2(7), 4070-4080.
Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Goli ´nska, P. & Belbahri, L. (2021). Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 11, 6255.
Thakare, Y., Kore, S., Sharma, I. & Shah, M. (2022). A comprehensive review on sustainable greener nanoparticles for efficient dye degradation. Environ. Sci. Pollut. Res. 29, 55415–55436.
Tkaczyk, A., Mitrowska, K. & Posyniak, A. (2020). Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 717, 137222.
Wang, C. B. & Zhang, W. X. (1997). Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 31(7), 2154–2156.
Wu, L. & Ritchie, S. M. (2006). Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere. 63(2), 285-92. doi: 10.1016/j.chemosphere.2005.07.021.
Xu, J. & Bhattacharyya, D. (2005). Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties. Environ Prog. 24(4), 358-366. doi.org/10.1002/ep.10106.
Xu, J. & Bhattacharyya, D. (2007). Fe/Pd Nanoparticle Immobilization in Microfiltration Membrane Pores: Synthesis, Characterization, and Application in the Dechlorination of Polychlorinated Biphenyls. Ind. Eng. Chem. Res. 46 (8), 2348-2359. doi: 10.1021/ie0611498.
You, X., Huang, H., Zhang, R., Yang, Z., Xu, M., Wang, X. & Yao, Y. (2021). Immobilization of TiO2 Nanoparticles in Hydrogels Based on Poly (methyl acrylate) and Succinamide Acid for the Photodegradation of Organic Dyes. Catalysts. 11, 613.
Zhang, P., Tao, X., Li, Z. & Bowman, R. S. (2002). Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets. Environ Sci Technol. 36(16), 3597-603. doi: 10.1021/es015816u.
Zhu, Y., Liu, X., Hu, Y., Wang, R., Chen, M., Wu, J., Wang, Y., Kang, S., Sun, Y. & Zhu, M. (2019). Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. 174, 54-60.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)