##plugins.themes.bootstrap3.article.main##

K. Anitha A. Senthil M.K. Kalarani N. Senthil S. Marimuthu M. Umapathi

Abstract

Global warming is predicted to have a generally negative effect on food grain production. The emergence of seedlings, blooming, pod-filling stages and yield of the mung bean are affected by high-temperature stress. Melatonin is a multifunctional signaling molecule with antioxidant properties that plays a vital role in plant stress defense mechanism. With this knowledge, the experiment was conducted to identify the optimum melatonin concentration to mitigate the adverse effects of high temperature in green gram var CO 8 with a completely randomized design (CRD). The treatments consisted of soaking seeds with different melatonin concentrations, viz., 20, 40, 60, 80 and 100 μM. Seeds were sown in a pertidish and allowed to germinate. After 5 days, the seedlings were exposed to two different high-temperature stress following the temperature induction response (TIR) protocol in the growth chamber viz., Ambient + 2°C (40°C) and Ambient + 4°C (42°C). After stress period, the seedlings were allowed to recover at room temperature for 2 days. At the end of the recovery period, observations on temperature tolerance-related traits viz., survival percentage, per cent reduction of shoot and root growth, cell viability, mortality per cent, malondialdehyde content, superoxide dismutase and catalase activity of green gram seedlings were assessed. Seeds pre-treated with melatonin of 100 and 80 µM exhibited higher survival percentage, shoot and root growth, cell viability and antioxidant enzyme activity (like superoxide dismutase and catalase) with reduced mortality per cent and malondialdehyde content under high-temperature stress at both 40°C and 42°C. The results revealed that seeds treated with different melatonin concentrations significantly improved green gram germination and seedling health.                

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Greengram, Melatonin, High-temperature stress, Seedlings survival

References
Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121–126. doi: 10.1016/S0076-6879(84)05016-3
Arnao, M. & Hernandez-Ruiz, J. (2019). Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Research, 2(3), 152-168. doi.org/https://doi.org/10.32794/11250036
Back, K., Tan, D.X. & Reiter, R.J. (2016). Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61, 426–437. doi.org/10.1111/jpi.12364
Basu, P. S., Pratap, A., Gupta, S., Sharma, K., Tomar, R. & Singh, N. P. (2019). Physiological traits for shortening crop duration and improving productivity of greengram (Vigna radiata L. Wilczek) under high temperature. Frontiers in Plant Science, 10:1508. doi: 10.3389/fpls.2019.01508
Bita, C. E. & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. doi.org/10.3389/fpls.2013.00273
Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I. & Wang, C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9(7), 809. doi.org/10.3390/plants9070809
Cao, Q., Li, G., Cui, Z., Yang, F., Jiang, X., Diallo, L. & Kong, F. (2019). Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Scientific Reports, 9(1), 1-12. doi.org/10.1038/s41598-019-51122-y
Chen, Y., Li, R., Ge, J., Liu, J., Wang, W., Xu, M., Zhang, R., Hussain, S., Wei, H. & Dai, Q. (2021). Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Environmental and Experimental Botany, 189:104530. doi.org/10.1016/j.envexpbot.2021.104530
Dhindsa, R. S., Plumb-Dhindsa, P. and Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. doi.org/10.1093/jxb/32.1.93
Di Meo, S., Reed, T. T., Venditti, P. & Victor, V. M. (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity. 1245049. doi: 10.1155/2016/1245049
Essemine, J., Ammar, S. & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10(6), 565-572. doi: 10.3923/jbs.2010.565.572
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D. & Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 1147. doi.org/10.3389/fpls.2017.01147
Hanumantha Rao., B., Nair, R. M. & Nayyar, H. (2016). Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 7, 957. doi: 10.3389/fpls.2016.00957
Hemantaranjan, A., Bhanu, A. N., Singh, M. N., Yadav, D. K., Patel, P. K. & Katiyar, D. (2014). Heat stress responses and thermotolerance. Advances in Plants & Agriculture Research, 1, 62-70. doi: 10.15406/apar.2014.01.00012.
Hossain, M. S., Li, J., Sikdar, A., Hasanuzzaman, M., Uzizerimana, F., Muhammad, I., Yuan, Y., Zhang, C., Wamg, C. & Feng, B. (2020). Exogenous melatonin modulates the physiological and biochemical mechanisms of drought tolerance in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules, 25(12), 2828. doi: 10.3390/molecules25122828
Hu, Z. R., Fan, J. B., Xie, Y., Amombo, E., Liu, A., Gitau, M. M., Khaldun, A. B. M., Chen, L. & Fu, J. (2016). Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermuda grass by exogenous melatonin. Plant Physiology and Biochemistry, 100, 94–104. doi: 10.1016/j.plaphy.2016.01.008.
Huang, B., Chen, Y. E., Zhao, Y. Q., Ding, C. B., Liao, J. Q., Hu, C., Zhou, L. J., Zhang, Z. W., Yuan, S. & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science, 10, 677. doi: 10.3389/fpls.2019.00677.
Imran, M., Aaqil Khan, M., Shahzad, R., Bilal, S., Khan, M., Yun, B. W., Khan, A. L. & Lee, I. J. (2021). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules, 26(17), 5116. doi.org/10.3390/molecules26175116
IPCC (2014). Climate Change Synthesis Report Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 151.
Jahan, M. S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., Sun, J. & Guo, S. (2019). Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biology, 19(1), 1-16. doi: 10.1186/s12870-019-1992-7
Jiang, X., Li, H. & Song, X. (2016). Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pakistan Journal of Botany, 48(4), 1345-1352.
Karabal, E., Yucel, M. & Oktem, H. A. (2003). Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science, 164(6), 925-933. doi.org/10.1016/S0168-9452(03)00067-0
Karande, B. I., Patel, H. R., Yadav, S. B., Vasani, M. J. & Patil, D. D. (2018). Impact of projected climate change on summer mungbean in Gujarat, India. International Journal of Current Microbiology and Applied Sciences, 7(8), 4178-4189. doi:10.20546/ijcmas.2018.708.437
Kaur, R., Bains, T. S., Bindumadhava, H. & Nayyar, H. (2015). Responses of mungbean (Vigna radiata L.) genotypes to heat stress. Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae, 197, 527–541. doi: 10.1016/j.scienta.2015.10.015
Khan, A., Numan, M., Khan, A. L., Lee, I. J., Imran, M., Asaf, S. & Al-Harrasi, A. (2020). Melatonin: Awakening the defense mechanisms during plant oxidative stress. Plants, 9(4), 407. doi.org/10.3390/plants9040407
Kheir, E. A., Sheshshayee, M. S., Prasad, T. G. & Udayakumar, M. (2012). Temperature induction response as a screening technique for selecting high temperature-tolerant cotton lines. Journal of Cotton Science, 16(3), 190-199.
Lee, J., Lee, H., Wi, S., Yu, I., Yeo, K. H., An, S., Jang, Y. & Jang, S. (2021). Enhancement of growth and antioxidant enzyme activities on kimchi cabbage by melatonin foliar application under high temperature and drought stress conditions. Journal of Horticultural Science and Technology, 1, 583-592. doi.org/10.7235/HORT.20210052.
Lei, K.Q., Sun, S.Z., Zhong, K.T., Li, S.Y., Hu, H., Sun, C.J., Zheng, Q.M., Tian, Z.W., Dai, T.B. & Sun, J.Y. (2021). Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. Ecotoxicology and Environmental Safety, 220, 112-241. doi.org/10.1016/j.ecoenv.2021.112241
Liang, C., Li, A., Yu, H., Li, W., Liang, C., Guo, S., Zhang, R. & Chu, C. (2017). Melatonin regulates root architecture by modulating auxin response in rice. Frontiers in Plant Science, 8, 134. doi.org/10.3389/fpls.2017.00134
Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J. & Xia, H. (2018). Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Frontiers in Plant Science, 9, 426. doi.org/10.3389/fpls.2018.00426
Luo, H., Xu, H., Chu, C., He, F. & Fang, S. (2020). High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science, 11, 160. doi.org/10.3389/fpls.2020.00160
Moradpour, M., Abdullah, S. N. A. & Namasivayam, P. (2021). The impact of heat stress on morpho-physiological response and expression of specific genes in the heat stress-responsive transcriptional regulatory network in Brassica oleracea. Plants, 10(6), 1064. doi.org/10.3390/plants10061064
Narayanan, S. (2018). Effects of high temperature stress and traits associated with tolerance in wheat. Open Access Journal of Science, 2(3),177-186. doi:10.15406/oajs.2018.02.00067
Parihar, A. K., Basandrai, A. K., Sirari, A., Dinakaran, D., Singh, D., Kannan, K., Kushawaha, K. P. S., Adinarayan, M., Akram, M., Latha, T. K. S., Paranidharan, V. & Gupta, S. (2017). Assessment of mungbean genotypes for durable resistance to Yellow Mosaic Disease: Genotype × Environment interactions. Plant Breeding, 36, 94–100. doi: 10.1111/pbr.12446
Priya, M., Pratap, A., Sengupta, D., Singh, N. P., Jha, U. C., Siddique, K. & Nayyar, H. (2020). Mungbean and high temperature stress: responses and strategies to improve heat tolerance. In Heat stress in food grain crops: Plant breeding and omics research (pp. 144-170). Bentham Science Publishers.
Rajora, N., Vats, S., Raturi, G., Thakral, V., Kaur, S., Rachappanavar, V., Kumar, M., Kesarwani, A. K., Sonah, H., Sharma, T. R. & Deshmukh, R. (2022). Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress, 4, 100071. doi.org/10.1016/j.stress.2022.100071
Rekha, K., Reddy, D. & Sudhakar, P. (2016). Standardization of optimum temperature conditions and screening of thermotolerant mungbean genotypes using thermo induction response (TIR). Journal of Environmental Sciences, 10(3&4), 485-489.
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. doi: 10.3390/antiox10020277.
Sarropoulou, V., Dimassi-Theriou, K., Therios, I. & Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiology and Biochemistry, 61, 162-168. doi.org/10.1016/j.plaphy.2012.10.001.
Sharma, L., Priya, M., Bindumadhava, H., Nair, R. M. & Nayyar, H. (2016). Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae, 213, 379-391. doi:10.1016/j.scienta.2016.10.033.
Singh, J. & Thakur, J. K. (2018). Photosynthesis and abiotic stress in plants. In Biotic and abiotic stress tolerance in plants (pp. 27-46). Springer, Singapore.
Sita, K., Sehgal, A., HanumanthaRao, B., Nair, R. M., Vara Prasad, P. V., Kumar, S., Gaur, P. M., Farooq, M., Siddique, K. H. M., Varshney, R. K. & Nayyar, H. (2017). Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658. doi.org/10.3389/fpls.2017.01658
Soengas, P., Rodriguez, V. M., Velasco, P. & Cartea, M. E. (2018). Effect of temperature stress on antioxidant defenses in Brassica oleracea. Acs Omega, 3(5), 5237-5243. doi.org/10.1021/acsomega.8b00242.
Song, Y., Chen, Q., Ci, D., Shao, X. & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC plant biology, 14(1), 1-20. doi.org/10.1186/1471-2229-14-111
Sun, C., Liu, L., Wang, L., Li, B., Jin, C. & Lin, X. (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63(1), 126-145. doi.org/10.1111/jipb.12993
Yamamoto Y. (2016). Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Frontiers in Plant Science, 7:1136. doi.org/10.3389/fpls.2016.01136
Yu, Y., Deng, L., Zhou, L., Chen, G. & Wang, Y. (2022). Exogenous melatonin activates antioxidant systems to increase the ability of Rice seeds to germinate under high temperature conditions. Plants, 11(7), 886. doi: 10.3390/plants11070886.
Zandalinas, S. I., Sales, C., Beltran, J., Gomez-Cadenas, A. & Arbona, V. (2017). Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Frontiers in Plant Science,7, 1954. doi: 10.3389/fpls.2016.01954.
Zeng, L., Cai, J., Li, J., Lu, G., Li, C., Fu, G., Zhang, X., Ma, H., Liu, Q., Zou, X. & Cheng, Y. (2018). Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture,17, 328–335. doi: 10.1016/S2095-3119(17)61757-x.
Zeng, W., Mostafa, S., Lu, Z. & Jin, B. (2022). Melatonin-mediated abiotic stress tolerance in plants. Frontiers in Plant Science, 13, 847175-847175. doi: 10.3389/fpls.2022.847175
Zhang, H. J., Zhang, N. A., Yang, R. C., Wang, L., Sun, Q. Q., Li, D. B., Cao, Y. Y., Weeda, S., Zhao, B., Ren, S. & Guo, Y. D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269-279. doi:10.1111/jpi.12167.
Zinn, K. E., Tunc-Ozdemir, M. & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61, 1959–1968. doi: 10.1093/jxb/erq053
Section
Research Articles

How to Cite

Melatonin mediated high-temperature tolerance at seedling stage in green gram (Vigna radiata L.) . (2023). Journal of Applied and Natural Science, 15(1), 85-93. https://doi.org/10.31018/jans.v15i1.4228