##plugins.themes.bootstrap3.article.main##

Gokul Kannan. T M. Maheswari K. Suganya K. Bhuvaneswari Balaji Kannan R. Sunitha M. Sinduja

Abstract

Pharmaceuticals and personal care products (PPCPs) are generally neither totally removed by sewage treatment nor completely destroyed in the environment. Metformin (MET) and triclosan (TRI) are two compounds in PPCPs that have the potential to be environmental pollutants. This research aimed to determine MET and TRI in sewage sludge using a liquid chromatograph-mass spectrometer (LCMS-8040) and a sewage sludge extraction method. The Milli-Q water and sewage sludge were also tested at three different MET and TRI concentrations (0.01, 0.02, and 0.03 mg L-1). As a result, the corresponding recoveries of MET and TRI in both matrixes ranged from 85.93 to 116.10 per cent and 90.50 to 116.30 per cent (n = 7, RSD < 10%). Then, the limit of detection (LOD) and the limit of quantification (LOQ) for MET and TRI were found to be 0.005 and 0.01 mg L-1. The amounts of MET and TRI in the sewage sludge samples from the Ukkadam sewage treatment plant (USTP), Coimbatore, ranged from BDL to 0.0587 mg L-1 and 0.0719 to 0.1851 mg L-1, respectively. Consequently, the amounts of MET and TRI in the sewage sludge samples from the Tamil Nadu Agricultural University sewage treatment plant (TSTP), Coimbatore, ranged from BDL to 0.0227 mg L-1 and 0.0393 to 0.1296 mg L-1, respectively. This exclusive use of the highly sensitive LCMS-8040 consumes less time than other analytical methods for measuring the amount of MET and TRI in sewage sludge by overcoming the risk of chemical degradation.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Sewage sludge, Metformin (MET), Triclosan (TRI), Liquid chromatography-mass spectrometry (LC-MS)

References
Barros, S., Ribeiro, M., Coimbra, A. M., Pinheiro, M., Morais, H., Alves, N. & Neuparth, T. (2022). Metformin disrupts Danio rerio metabolism at environmentally relevant concentrations: A full life-cycle study. Science of The Total Environment, 157361. https://doi.org/10.1016/j.scito tenv.2022.157361.
Briones, R. M. & Sarmah, A. K. (2019). Modelling degradation kinetics of metformin and guanylurea in soil microcosms to derive degradation end-points. Environmental Pollution, 245, 735-745.https://doi.org/10.1016/j.envpol.20 18.11.045.
De Bhowmick, G., Briones, R. M., Thiele-Bruhn, S., Sen, R. & Sarmah, A. K. (2022). Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment. Environmental Pollution, 292, 118256. https://doi.org/10.1016/j.envpol.2021.118256.
Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M. & Surampalli, R. Y. (2015). Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. International Journal of Environmental Research and Public Health, 12(5), 5657-5684. https://doi.org/10.3390/ijerph120505657.
Dubey, M., Mohapatra, S., Tyagi, V. K., Suthar, S. & Kazmi, A. A. (2021). Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environmental Pollution, 273, 116515. https://doi.org/10.1016/j.envpol.2021.116515.
Ezzariai, A., Hafidi, M., Khadra, A., Aemig, Q., El Fels, L., Barret, M., ... & Pinelli, E. (2018). Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials, 359, 465-481. https://doi.org/10.1016/j.jhazmat.2018.07.092.
Fijalkowski, K., Rorat, A., Grobelak, A., & Kacprzak, M. J. (2017). The presence of contaminations in sewage sludge–The current situation. Journal of Environmental Management, 203, 1126-1136. https://doi.org/10.1016/j.jenvma n.2017.05.068
Guo, Y., Rene, E. R Guo, Y., Rene, E. R., Wang, J. & Ma, W. (2020). Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste. Bioresource Technology, 297, 122434. https://doi.org/10.1016/j.biortech.2019.122434.
Haiba, E., Nei, L., Herodes, K., Ivask, M. & Lillenberg, M. (2018). On the degradation of metformin and carbamazepine residues in sewage sludge compost. http://dx.doi.org/10.15159/ar.18.123.
Haiba, E., Nei, L., Kutti, S., Lillenberg, M., Herodes, K., Ivask, M. & Laaniste, A. (2017). Degradation of diclofenac and triclosan residues in sewage sludge compost. Agronomy Research, 15(2), 395-405.
International Diabetes Federation. (2021). IDF Diabetes Atlas 10th ed.
Kachhawaha, A. S., Nagarnaik, P. M., Jadhav, M., Pudale, A., Labhasetwar, P. K. & Banerjee, K. (2017). Optimization of a modified QuEChERS method for multiresidue analysis of pharmaceuticals and personal care products in sewage and surface water by LC-MS/MS. Journal of AOAC International, 100(3), 592-597. https://doi.org/10.5740/jaoacint.17-0060.
Kachhawaha, A. S., Nagarnaik, P. M., Labhasetwar, P. K. & Banerjee, K. (2021). Pharmaceuticals and personal care products in aqueous urban environment of western India. Water and Environment Journal, 35(4), 1302-1312. https://doi.org/10.1111/wej.12720
Kaur, G., Garg, S., Sharma, P. & Sud, D. (2021). A Review on High Performance Liquid Chromatographic Methods for the Determination of Metformin. Current Analytical Chemistry, 17(6), 754-767. https://doi.org/10.2174/157341 1016666200310141939.
Kim, M., Li, L. Y., Gorgy, T. & Grace, J. R. (2017). Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis. Environmental Pollution, 220, 753-765. https://doi.org/10.1016/j.envpol.2016.10.053.
Kumar, S., Paul, T., Shukla, S. P., Kumar, K., Karmakar, S., & Bera, K. K. (2021). Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. Environmental Pollution, 286, 117569. https://doi.org/10.1016/j.envpol.2021.117569.
Li, J. & Tabassum, S. (2021). Influence and efficiency of an anti-diabetic drug Metformin hydrochloride as an uncoupler: Reducing sludge production. Cleaner Engineering and Technology, 4, 100203. https://doi.org/10.1016/j.clet.2021.100203.
Li, J., Yu, G., Xie, S., Pan, L., Li, C., You, F. & Wang, Y. (2018). Immobilization of heavy metals in ceramsite produced from sewage sludge biochar. Science of the Total Environment, 628, 131-140. https://doi.org/10.1016/j.scitotenv.2018.02.036
Marie, A. A., Salim, M. M., Kamal, A. H., Hammad, S. F. & Elkhoudary, M. M. (2022). Analytical quality by design based on design space in reversed-phase-high performance liquid chromatography analysis for simultaneous estimation of metformin, linagliptin and empagliflozin. Royal Society Open Science, 9(6), 220215. https://doi.org/10.1098/rsos.220215
Meffe, R., de Santiago-Martín, A., Teijón, G., Hernández, V. M., López-Heras, I., Nozal, L. & de Bustamante, I. (2021). Pharmaceutical and transformation products during unplanned water reuse: Insights into natural attenuation, plant uptake and human health impact under field conditions. Environment International, 157, 106835. https://doi.org/10.1016/j.envint.2021.106835
Montaseri, H. & Forbes, P. B. (2016). TrAC trends, Anal. Chem, 85, 221.
Motia, S., Tudor, I. A., Ribeiro, P. A., Raposo, M., Bouchikhi, B. & El Bari, N. (2019). Electrochemical sensor based on molecularly imprinted polymer for sensitive triclosan detection in wastewater and mineral water. Science of the Total Environment, 664, 647-658. https://doi.org/10.1016/j.scitotenv.2019.01.331.
Mrozik, W. & Stefańska, J. (2014). Adsorption and biodegradation of antidiabetic pharmaceuticals in soils. Chemosphere, 95, 281-288. https://doi.org/10.1016/j.chemosphere.2013.09.012.
Nei, L., Haiba, E., Kutti, S., Kipper, K., Herodes, K. & Lillenberg, M. (2014). Sewage sludge compost, microbial activity and pharmaceuticals. Global Journal on Advances Pure and Applied Sciences, 3.
Pérez-Lemus, N., López-Serna, R., Pérez-Elvira, S. I. & Barrado, E. (2022). Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy. Microchemical Journal, 175, 107148. https://doi.org/10.1016/j.microc.2021.107148
Pérez-Lemus, N., López-Serna, R., Pérez-Elvira, S. I. & Barrado, E. (2020). Sample pre-treatment and analytical methodology for the simultaneous determination of pharmaceuticals and personal care products in sewage sludge. Chemosphere, 258, 127273. https://doi.org/10.1016/j.chemosphere.2020.127273.
Tee, K. B., Ibrahim, L., Hashim, N. M., Saiman, M. Z., Zakaria, Z. H. & Huri, H. Z. (2022). Pharmacokinetic–Pharmacometabolomic Approach in Early-Phase Clinical Trials: A Way Forward for Targeted Therapy in Type 2 Diabetes. Pharmaceutics, 14(6), 1268. https://doi.org/10.3390/pharmaceutics14061268.
Verlicchi, P. & Zambello, E. (2015). Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil—A critical review. Science of the Total Environment, 538, 750-767. https://doi.org/10.1016/j.scitotenv.2015.08.108
Wang, D., Yi, N., Wang, Y., Yang, J., Fu, Q., Liu, X. & Ni, B. J. (2021). Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production. Chemical Engineering Journal, 421, 129948. https://doi.org/10.1016/j.cej.2021.129948.
Wang, Y. & Liang, W. (2021). Occurrence, toxicity, and removal methods of triclosan: a timely review. Current Pollution Reports, 7(1), 31-39. https://doi.org/10.1007/s40726-021-00173-9
Xin, X., Huang, G., Zhang, B. & Zhou, Y. (2021). Trophic transfer potential of nTiO2, nZnO, and triclosan in an algae-algae eating fish food chain. Aquatic Toxicology, 235, 105824. https://doi.org/10.1016/j.aquatox.2021.105824.
Section
Research Articles

How to Cite

Determination of metformin and triclosan in sewage sludge using Liquid chromatography-mass spectrometry (LC-MS) . (2022). Journal of Applied and Natural Science, 14(4), 1320-1326. https://doi.org/10.31018/jans.v14i4.3906