##plugins.themes.bootstrap3.article.main##

S. Preethi https://orcid.org/0000-0001-5967-1771 K.N. Ragumoorthi B. Vinothkumar V. Balasubramani D. Kumaresan

Abstract

To reduce the detrimental effect of insecticides, an effective Integrated Pest Management (IPM) module is necessary for the eco-friendly management of Maruca vitrata in garden bean ecosystem. Two field trials were carried out to evaluate the efficacy of different insecticides and botanicals against M. vitrata on Lablab purpureus var. typicus. Two seasons field evaluation of insecticides revealed that chlorantraniliprole 18.5 SC  was the most effective treatment to control the pest recorded 0.11 and 0.36 larva/plant in two seasons, respectively after two rounds of spray followed by flubendiamide 20 WG (0.46 and 0.92 larva/ plant) and emamectin benzoate 5 SG (0.50 and 0.95 larva/plant). Among botanicals tested, commercial neem formulation and 5% Ageratina adenophora recorded the least larval count of 1.64 & 1.05 larva/plant and 2.24 & 1.45 larva/plant in two seasons, respectively. IPM modules were developed with three effective insecticides (chlorantraniliprole 18.5 SC, flubendiamide 20 WG and emamectin benzoate 5 SG), two effective botanicals (commercial neem formulation 1500 ppm and 5% A. adenophora) along with the pheromone trap for validation. All the IPM modules were equally effective in managing M. vitrata population on L. purpureus and recorded a significantly (at 5 %) lower larval population than the farmer’s practice. The residues of chlorantraniliprole, flubendiamide and emamectin benzoate reached below the detectable level at the time of harvest. The population reduction of predatory coccinellids and spiders was also lower in IPM modules than in farmer’s practice. An increased benefit cost (1.95 to 1.99) ratio was observed in IPM modules.  

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bioefficacy, Garden bean, IPM module, Maruca vitrata, Residue

References
Ahmed, M.T., Miah, M.R.U., Amin, M.R. & Hossain, M.M. (2015). Evaluation of some plant materials against pod borer infestation in country bean with reference to flower production. Annals of Bangladesh Agriculture, 19, 71-78.
Anastassiades, M., Lehotay, J., Štajnbaher, D. & Schenck, F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ―dispersive solid-phase extraction‖ for the determination of pesticide residues in produce. Journal of AOAC International, 86 (2), 412-431.
Aryal, L.N., Regmi, R., Lohani, S. & Bhusall, Y. (2021). Efficacy of commercial insecticides for cowpea pod borer (Maruca vitrata F.) management in Pokhara, Nepal. Journal of Agriculture and Natural Resources, 4(1), 165-175. doi.org/10.3126/janr.v4i1.33250
Bose, T.K., Som, M.G. & Kabir, J. (1993). Vegetable Crops. Published by Naya Prakash 206 Bidhan Sarani, Calcutta, 612.
Chandrayudu, E., Srinivasan, S. & Rao, N.V. (2006). Comparative biology of spotted pod borer, Maruca vitrata (Geyer) in major grain legumes. Journal of Applied Zoological Researches, 16(2), 147-149.
Chatterjee, M.L. & Roy, S. (2004). Bio-efficacy of some insecticides against brinjal shoot and fruit borer, Leucinodes orbonalis Guenee and effect of novaluron on natural enemies of brinjal pests. Pestology, 28(10), 52-56.
Chawan, R., Naik, R.H., Pallavi, M.S., Rachappa, V., Pramesh, D. & Bheemanna, M. (2020) Lc-esi-ms/ms method for determination of chlorantraniliprole residue and its dissipation kinetics in pigeonpea. Pesticide Research Journal, 32(1), 96-106. doi.org/10.5958/2249-524X.2020.00013.8.
Choudhary, S., Kantegari, A. R. & Kumawat, K. C. (2020). Succession and incidence of sucking insect pests and their natural enemies on Indian bean, Lablab purpureus var. typicus (L.) sweet in relation to meteorological parameters. Journal of Entomology and Zoological Studies, 8(4), 64 -68.
Deepak, S., Reddy, N., Gaikwad, S. & Shashibhushan, S. (2017). Bio-efficacy and dissipation of flubendiamide against shoot and fruit borer (Earias vittella Fab.) of okra. Journal of Entomology and Zoology Studies, 5(4), 1825-1829.
Ganapathy, N. (1996). Bioecology and management of spotted pod borer, Maruca testulalis Geyer.(Pyralidae: Lepidoptera) in pigeonpea. Unpub.Doctoral dissertation, Ph. D. Thesis. Tamil Nadu Agricultural University, Coimbatore, India. 171p.
Ghosh, A. & Chatterjee, M. (2009). Bio-efficacy of spinosad against tomato fruit borer (Helicoverpa armigera Hub.) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Horticulture and Forestry, 2(5), 108-111. doi.org/10.5897/JHF.9000009.
Gopalan, C., Rama Sastri, B.V. & Balasubramanian, S.C. (2004). Nutritive Value of Indian Food, National Institute of Nutrition, ICMR, Hyderabad, 204 p.
Grigolli, J.F.J., Lourencao, A.L.F. & Ávila, C.J. (2015). Field Efficacy of Chemical Pesticides against Maruca vitrata Fabricius (Lepidoptera: Crambidae) Infesting Soybean in Brazil. American Journal of Plant Sciences, 6, 537-544. doi.org/10.4236/ajps.2015.64058.
Jacob, P.S. & Revathi. (2019). Maruka Pod Borer [Maruca vitrata (Geyer)] Management in blackgram (Vigna mungo L.) in Krishna District of Andhra Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 8(7), 2316-2322. doi.org/10.20546/ijcmas.201 9.807.283
Kanhere, R.D., Patel, V.N., Umbarkar, P.S.& Kakde, A.M. (2012). Bio-efficacy of different insecticides against spotted pod borer, Maruca testulalis (Geyer) infesting cowpea. Legume Research-An International Journal, 35(1), 44-46.
Kar, A., Mandal, K. & Singh, B. (2013). Environmental fate of chlorantraniliprole residues on cauliflower using QuEChERS technique. Environmental monitoring and assessment, 185(2), 1255-1263. Doi.org/10.1007/s10661-012-2629-6.
Kattula, S. Y., Pandya, H. & Swarnalata, B. (2018). Efficacy of different combination of insecticides against spotted pod borer in cowpea [Vigna ungiculata (L.) Walp.]. International journal of chemical studies, 6(3), 1199-1202.
Kolarath, R., Shekharappa, B.R., Nandihalli, B.S. & Havaldar, V.N. (2015) Evaluation of newer insecticides for the management of pod borers of field bean, Lablab purpureus (L.) sweet. Karnataka Journal of Agricultural Sciences, 28(1), 107-9.
Mahalakshmi, M.S., Sreekanth, M., Adinarayana, M., Reni, Y.P., Rao, Y.K. & Narayana, E. (2016). Incidence, bionomics and management of spotted pod borer [Maruca vitrata (Geyer)] in major pulse crops in India-A review. Agricultural Reviews, 37(1), 19-26.
Malhat, F., Abdallah, H. & Hegazy, I. (2012). Dissipation of chlorantraniliprole in tomato fruits and soil. Bulletin of environmental contamination and toxicology, 88(3), 349-351. doi.org/10.1007/s00128-011-0465.
Naik, M.G., Mallapur, C.P. & Naik, A.K. (2019). Field efficacy of newer insecticide molecules against spotted pod borer, Maruca vitrata (Geyer) on black gram. Journal of Entomology and Zoology studies, 7(3), 635-637.
Paramasivam, M. & Banerjee, H. (2013). Dissipation of flubendiamide residues in/on cabbage (Brassica oleracea L.). Environmental monitoring and assessment, 185(2), 1577-1581. doi.org/10.1007/s10661-012-2652-7.
Pillai, A.K., Meena, A. & Selvaraj, S. (2013). Field efficacy of biopesticides against pod borer complex in pigeonpea, Cajanus cajan (L.) Mill sp. Biopesticides International, 9(2): 132-138.
Reddy, B.K.K. & Hampaiah, J. (2018). Evaluation of Insecticide Mixtures against Larval Population of Spotted Pod Borer, Maruca vitrata in Cowpea. International Journal of Current Microbiology and Applied Science, 7(7), 1820-1826.
Reddy, S.S., Reddy, C.N., Reddy, A.A., Rao, A.M. & Reddy, S.N. (2020). Dissipation pattern of flubendiamide 480% SC in Dolichos bean. Journal of Entomology and zoology studies, 8(6), 1942-1946.
Rekha, S. & Mallapur, C.P. (2007). Studies on insect pests of dolichos bean in northern Karnataka. Karnataka Journal of Agricultural Sciences, 20(2):407-409.
Rouf, F.M.A. & Sardar, M.A. (2011). Effect of crude seed extract of some indigenous plants for the control of legume pod borer (Maruca vitrata F.) on country bean. Bangladesh Journal of Agricultural Research, 36(1), 41-50. doi.org/10.3329/bjar.v36i1.9228
Sambathkumar, S., Durairaj, C., Ganapathy, N. & Mohankumar, S. (2015). Field evaluation of newer insecticide molecules and botanicals against pod borers of red gram. Field Studies, 38(2), 261. doi.org/10.5958/0976-0571.2015.00048.
SANTE. The European Commission (2017). Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. Document no. SANTE/11813/2017. 47p. http://www.crl-pesticides.eu/docs/ public/ tmplt_article.asp?CntID=727&LabID=100&Lang=EN.
Sharma, S.S. & Kaushik, H.D. (2010). Effect of Spinosad (a bioinsecticide) and other insecticides against pest complex and natural enemies on eggplant (Solanum melongena L.).  Journal of entomological Research, 34(1), 39-44.
Singh, G., Chahil, G.S., Jyot, G., Battu, R.S.Y. & Singh, B. (2013). Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bulletin of Environmental Contamination and Toxicology, 91(1), 129-133. doi.org/10.1007/s00128-013-1013-8.
Singh, S.R. & Allen, D.J. (1980). Pests, diseases, resistance, and protection in cowpeas. Advances in Legumes Science, 419-443.
Singh, S.R. & Jackai, L.E.N. (1988). The legume pod-borer, Maruca testulalis (Geyer): past, present and future research. International Journal of Tropical Insect Science, 9(1), 1-5.
Sokame, B.M., Tounou, A.K., Datinon, B., Dannon, E.A., Agboton, C., Srinivasan, R., Pittendrigh, B.R. & Tamò, M. (2015). Combined activity of Maruca vitrata multi- nucleo poly hedro virus, Mavi MNPV, and oil from neem, Azadirachta indica Juss and Jatropha curcas L., for the control of cowpea pests. Crop Protection, 72, 150-157. doi.org/10.1016/j.cropro.2015.03.016.
Sreekanth, M., Lakshmi, M.S.M. & Rao, K.Y. (2015). Efficacy of different insecticides against legume pod borer, Maruca vitrata (Geyer) on pigeonpea. International Journal of Innovative Science, Engineering & Technology, 2(5), 452-459. doi.org/10.7324/JABB.2015.3302.
Sreekanth, M. & Seshamahalakshmi, M. (2018). Evaluation of Bt liquid formulations against gram pod borer, Helicoverpa armigera (Hubner) and spotted pod borer, Maruca vitrata (Geyer) in pigeonpea. Journal of Biopesticides, 11(1), 52-59.
Swathi, K., Ramu, P.S., Dhurua, S. & Suresh, M. (2019). Field evaluation of newer insecticides against spotted pod borer [Maruca vitrata (Geyer)], on blackgram (Vigna mungo L.) in North Coastal Andhra Pradesh. International Research Journal of Pure & Applied Chemistry, 18(2), 1-9. doi.org/10.9734/IRJPAC/2019/v18i230083.
Taylor, T.A. (1967). The bionomics of Maruca testulalis Geyer (Lepidoptera: Pyralidae), a major pest of cowpea in Nigeria. Journal of the West African Science Association, 12, 111-129.
Vijayasree, V., Bai, H., Mathew, T.B., George, T., Xavier, G., Kumar, N.P. & Visalkumar, S. (2014). Dissipation kinetics and effect of different decontamination techniques on the residues of emamectin benzoate and spinosad in cowpea pods. Environmental Monitoring and Assessment, 186(7), 4499-4506. doi.org/ 10.1007/s10661-014-3714-9.
Vijayasree, V., Bai, H., Naseema Beevi, S., Mathew, T.B., Kumar, V., George, T. & Xavier, G. (2013). Persistence and effects of processing on reduction of chlorantraniliprole residues on cowpea fruits. Bulletin of Environmental Contamination and Toxicology, 90(4), 494-498. doi.org/10.1007/s00128-012-0944-9.
Yadav, N.K. & Singh, P.S. (2014) Bio-efficacy of chemical insecticides against spotted pod borer, Maruca testulalis (Geyer) on cowpea. International Journal of Agriculture, Environment and Biotechnology, 7(1), 187-190. doi.org/10.5958/j.2230-732X.7.1.025.
Yule, S. & Srinivasan, R. (2014). Combining bio-pesticides with chemical pesticides to manage legume pod borer (Maruca vitrata) on yard-long bean in Thailand. International Journal of Pest Management, 60(1), 67-72. doi.org/ 10.1080/09670874.2014. 900707.
Section
Research Articles

How to Cite

Development and validation of integrated pest management modules against spotted pod borer Maruca vitrata Fabricius on garden bean Lablab purpureus var. typicus (L.). (2022). Journal of Applied and Natural Science, 14(4), 1308-1319. https://doi.org/10.31018/jans.v14i4.3905