K. Anitha A. Senthil M. K. Kalarani N. Senthil S. Marimuthu M. Djanaguiraman M. Umapathi


Drought stress diminishes seedling germination and vigor by reducing water uptake, inhibiting plant growth and development. Most of the pulse growing areas are under rainfed ecosystems, which significantly reduces crop yield. Melatonin, a growth-regulating compound, is widely used to mitigate the negative effects of abiotic stresses in pulses. With this background, a laboratory experiment was conducted to standardize the optimum melatonin concentration for seed treatment and foliar application in greengram, to minimize the ill effects of drought stress. The experiment was arranged in a completely randomized design (CRD) with three replications for each treatment. The treatments consisted of soaking seeds with different melatonin concentrations, viz., 20, 40, 60, 80 and 100 μM. Seeds were sown in a perti dishes and the drought stress was imposed using poly ethylene glycol 6000 (PEG 6000) @ - 0.4 MPa, and plates were maintained at room temperature (24-30 °C). After the seedlings emerged, various seedling growth parameters like germination percentage, shoot length, root length, vigor index, promptness index, germination stress tolerance index, fresh and dry weight of the seedlings, plant height stress index and root length stress index were recorded. The experimental results showed that drought stress significantly reduced germination percentage and other growth-related parameters in greengram seedlings compared to the melatonin treatments. Among the melatonin treatments, seeds treated with @ 100 μM concentration recorded the highest germination percentage (99.67 %), promptness index (98.80), vigour index (1631.68), shoot and root length (8.9 cm and 7.5 cm), fresh and dry weight of the seedlings (3.249 and 0.147 mg seedling-1) under PEG induced drought stress condition.


Download data is not yet available.


Metrics Loading ...




Drought stress, Greengram, Melatonin, Seed treatment, Seedling tolerance

Abdul-Baki, A. A. & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630-633. doi:10.2135/cropsci1973.0011183X0013 00060013x.
Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., Jiang, S., Karima, S., Tian, Z., Jiang, D., Snider, J. & Dai, T. (2018). Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticumaestivum L.). Environmental and Experimental Botany, 145, 12–20. doi:10.1016/j.envexpbot.20 17.10.002.
Ahmad, S., Kamran, M., Ding, R., Meng, X., Wang, H., Ahmad, I., Fahad, S. & Han, Q. (2019). Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 7, e7793. doi:10.7717/peerj.7793.
Ahmad, S., Muhammad, I., Wang, G. Y., Zeeshan, M., Yang, L., Ali, I. & Zhou, X. B. (2021). Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology, 21(1), 1-14. doi:10.1186/s12870-021-03160-w.
Akbari, G. A., Heshmati, S., Soltani, E. & AminiDehaghi, M. (2020). Influence of seed priming on seed yield, oil content and fatty acid composition of safflower (Carthamustinctorius L.) grown under water deficit. International Journal of Plant Production, 14(2), 245-258. doi:10.1007/s42106-019-00081-5.
Arnao, M. B. & Hernandez-Ruiz, J. (2019). Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Science, 24, 38–48. doi:10.1016/j.tplants.2018.10.010.
Arnoldi, A., Zanoni, C., Lammi, C. & Boschin, G. (2014). The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Critical Reviews of Plant Sciences, 33, 1–3. doi:10.1080/07352689.2014.897908.
Bai, Y., Xiao, S., Zhang, Z., Zhang, Y., Sun, H., Zhang, K., Wang, X., Bai, Z., Li, C. & Liu, L. (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 8, e9450. doi:10.7717/peerj.9450.
Baroowa, B. & Gogoi, N. (2016). Morpho-physiological and yield responses of black gram (Vigna mungo L.) and green gram (Vigna radiata L.) genotypes under drought at different growth stages. Research Journal of Recent Sciences, 5(2), 43-50.
Bita, C. & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science, 4, 273. doi:10.3389/fpls.2013.00273.
Bouslama, M. & Schapaugh, W. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24 (5), 933-937. doi:10.2135/cropsci1984.0011183X002400050026x.
Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I. & Wang, C. (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9, 809. doi:10.3390/plants9070809.
Cao, Q., Li, G., Cui, Z., Yang, F., Jiang, X., Diallo, L. & Kong, F. (2019). Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Scientific reports, 9(1), 1-12. doi:10.1038/s41598-019-51122-y.
Chen, L., Lu, B., Liu, L., Duan, W., Jiang, D., Li, J., Zhang, K., Sun, H., Zhang, Y., Li, C. & Bai, Z. (2021). Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypiumhirsutum L.). Plant Physiology and Biochemistry, 162, 506-516. doi:10.1016/j.plaphy.2021.03.029.
Donohue, K., De Casas, R. R., Burghardt, L., Kovach, K. & Willis, C. G. (2010). Germination, post-germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41, 293–319. doi:10.1146/annurev-ecolsys-102209-144715.
Ellis, R. & Roberts, E. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9 (2), 373-409.
Farooq, M., Romdhane, L., Al Sulti, M. K., Rehman, A., Al-Busaidi, W. M. & Lee, D. J. (2019). Morphological, physiological and biochemical aspects of osmopriming-induced drought tolerance in lentil. Journal of Agronomy and Crop Science, 206(2), 176-186. doi:10.1111/jac.12384.
Geilfus, C. M. (2017). The pH of the apoplast: dynamic factor with functional impact under stress. Molecular Plant, 10(11), 1371-1386. doi:10.1016/j.molp.2017.09.018.
Guo, Y., Li, D., Liu, L., Sun, H., Zhu, L., Zhang, K., Zhao, H., Zhang, Y., Li, A., Bai, Z., Tian, L., Dong, H. & Li, C. (2022). Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 induced drought stress. Frontiers in Plant Science, 13:932912. doi:10.3389/fpls.2022.932912.
Hernandez-Ruiz, J. & Arnao, M. B. (2008). Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regulation, 55, 29–34. doi:10.1007/s10725-008-9254-y.
Huang, B., Chen, Y. E., Zhao, Y. Q., Ding, C. B., Liao, J. Q., Hu, C., Zhou, L. J., Zhang, Z. W., Yuan, S. & Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science, 10, 677. doi: https://doi.org/10.3389/fpls.2019.00677.
Huang, X., Tanveer, M., Min, Y. & Shabala, S. (2022). Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. Journal of Experimental Botany, 1, 1-17. doi:10.1093/jxb/erac224.
Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., Khan, A., Kang, S. M. & Lee, I. J. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants, 13(4), plab026. doi: 10.1093/aobpla/plab026.
IPCC (2014). Climate Change Synthesis Report Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 151.
Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., Abou El-Yazied, A., Alabdallah, N. M., Hikal, M., Mohamed, M. H. M., Ibrahim, M. F. M. & Hasan, M. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309–320. doi: 10.1016/j.plaphy.2021.08.002.
Jiang, X., Li, H. & Song, X. (2016). Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pakistan Journal of Botany, 48(4), 1345-1352.
Jincy, M., Prasad, V., Jeyakumar, P., Senthil, A. & Manivannan, N. (2021). Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage. International Journal of Legume Research, 44, 684-691. doi: 10.18805/LR-4149.
Kaur, R., Kaur, J. & Bains, T. S. (2017). Screening of mungbean genotypes for drought tolerance using different water potential levels. Journal of Advanced Agricultural Technologies, 4(2), 159 – 164. doi:10.18178/joaat.4.2.159-164.
Khan, T. A., Fariduddin, Q., Nazir, F. & Saleem, M. (2020). Melatonin in business with abiotic stresses in plants. Physiology and Molecular Biology of Plants, 26(10), 1931-1944. doi:10.1007/s12298-020-00878-z.
Li, Y., Zhang, L., Yu, Y., Zeng, H., Deng, L., Zhu, L., Chen, G. & Wang, Y. (2022). Melatonin-induced resilience strategies against the damaging impacts of drought stress in rice. Agronomy, 12 (4), 813. doi:10.3390/agronomy12040813.
Liang, C., Li, A., Yu, H., Li, W., Liang, C., Guo, S., Zhang, R. & Chu, C. (2017). Melatonin regulates root architecture by modulating auxin response in rice. Frontiers in Plant Science, 8, 134. doi:10.3389/fpls.2017.00134.
Liu, L., Wang, Z., Gai, Z., Wang, Y., Wang, B., Zhang, P., Liu, X., Chen, J., Zhang, S., Liu, D., Zou, C. & Li, C. (2022). Exogenous application of melatonin improves salt tolerance of sugar beet (Beta vulgaris L.) seedlings. Acta Physiologiae Plantarum, 44(6), 1-15. doi:10.1007/s11738-022-03389-4.
Moustafa-Farag, M., Mahmoud, A., Arnao, M. B., Sheteiwy, M. S., Dafea, M., Soltan, M., Elkelish, A., Hasanuzzaman, M. & Ai, S. (2020). Melatonin-induced water stress tolerance in plants: Recent advances. Antioxidants, 9(9), 809. doi:10.3390/antiox9090809.
Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. & Qiu, L. (2019). Research progress and perspective on drought stress in legumes: a review. International Journal of Molecular Sciences, 20(10), 2541. doi:10.3390/ijms20102541.
Nair, R. M., Pandey, A. K., War, A. R., Hanumantharao, B., Shwe, T., Alam, A. K. M. M., Pratap, A., Malik, S, R., Karimi, R., Mbeyagala, E. K., Douglas, C. A., Rane, J. & Schafleitner, R. (2019). Biotic and abiotic constraints in mungbean production-progress in genetic improvement. Frontiers in Plant Science, 10, 1340. doi: 10.3389/fpls.2019.01340.
Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M. & Hameed, S. (2016). Melatonin: current status and future perspectives in plant science. Frontiers in Plant Science, 6, 1230. doi: 10.3389/fpls.2015.01230.
Rambabu, B., Padma, V., Thatikunta, R. & Sunil, N. (2016). Effect of drought stress on chlorophyll content and anti-oxidant enzymes of green gram genotypes (Vigna radiata L.). Nature Environment and Pollution Technology, 15(4), 1205-1208.
Rehaman, A., Mishra, A. K., Ferdose, A., Per, T. S., Hanief, M., Jan, A. T. & Asgher, M. (2021). Melatonin in Plant Defense against abiotic stress. Forests, 12(10), doi:1404. 10.3390/f12101404.
Sadak, M. S. & Bakery, B. A. (2020). Alleviation of drought stress by melatonin foliar treatment on two flax varieties under sandy soil. Physiology and Molecular Biology of Plants, 26(5), 907–919. doi:10.1007/s12298-020-00789-z.
Saima, S., Li, G. & Wu, G. (2018). Effects of drought stress on hybrids of Vigna radiata at germination stage. Acta Biologica Hungarica, 69(4), 481-492. doi:10.1556/01 8.69.2018.4.9.
Sapra, V., Savage, E., Anaele, A. & Beyl, C. (1991). Varietal differences of wheat and triticale to water stress. Journal of Agronomy and Crop Science, 167(1), 23-28. doi:10.1111/j.1439-037X.1991.tb00929.x.
Sarropoulou, V. N., Therios, I. N. & Dimassi-Theriou, K. N. (2012). Melatonin promotes adventitious root regeneration in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus× P. canescens), and M x M 60 (P. avium× P. mahaleb). Journal of Pineal Research, 52(1), 38-46. doi:10.1111/j.1600-079X.2011.00914.x.
Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M. & Nayyar, H. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science,8, 1776. doi:10.3389/fpls.2017.01776.
Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S. & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695-707. doi:10.1093/jxb/eru392.
Xiao, S., Liu, L., Wang, H., Li, D., Bai, Z., Zhang, Y., Sun, H., Zhang, K. & Li, C. (2019). Exogenous melatonin accelerates seed germination in cotton (Gossypiumhirsutum L.). PloS one, 14(6), e0216575. doi:10.1371/journal.po ne.0216575.
Yu, R., Zuo, T., Diao, P., Fu, J., Fan, Y., Wang, Y., Zhao, Q., Ma, X., Lu, W., Li, A., Wang, R., Yan, F., Pu, L., Niu, Y. & Wuriyanghan, H. (2021). Melatonin enhances seed germination and seedling growth of Medicago sativa under salinity via a putative melatonin receptor MsPMTR1. Frontiers in Plant Science, 12:702875. doi:10.3389/fpls.2021.702875.
Zandalinas, S. I., Mittler, R., Balfagon, D., Arbona, V. & Gomez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162, 2–12. doi:10.1111/ppl.12540.
Zandalinas, S. I., Sales, C., Beltran, J., Gomez-Cadenas, A. &Arbona, V. (2017). Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Frontiers in Plant Science,7, 1954. doi:10.3389/fpls.2016.01954.
Zeng, L., Cai, J. S., Li, J. J., Lu, G. Y., Li, C. S., Fu, G. P., Zhang, X. K., Ma, H. Q., Liu, Q, Y., Zou, X. L. & Cheng, Y. (2018). Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture, 17(2), 328-335. doi:10.1016/S2095-3119(17)61757-x.
Zhang, H. J., Zhang, N. A., Yang, R. C., Wang, L., Sun, Q. Q., Li, D. B., Cao, Y. Y., Weeda, S., Zhao, B., Ren, S. & Guo, Y. D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57(3), 269-279. doi:10.1111/jpi.12167.
Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C., Yang, Z. C., Ren, S. and Guo, Y. D. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54 (1), 15-23. doi:10.1111/j.1600-079X.2012.01015.x.
Zhang, P., Liu, L., Wang, X., Wang, Z., Zhang, H., Chen, J., Liu, X., Wang, Y. & Li, C. (2021). Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). Plants, 10, 886. doi: 10.3390/plants10050886.
Zhang, T., Shi, Z., Zhang, X., Zheng, S., Wang, J. & Mo, J. (2020). Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 262, 109070. doi: 10.1016/j.scienta.2019.109070.
Citation Format
How to Cite
Anitha, K., Senthil, A., Kalarani, M. K., Senthil, N., Marimuthu, S., Djanaguiraman, M., & Umapathi, M. (2022). Exogenous melatonin improves seed germination and seedling growth in greengram under drought stress. Journal of Applied and Natural Science, 14(4), 1190–1197. https://doi.org/10.31018/jans.v14i4.3818
More Citation Formats:
Research Articles

Most read articles by the same author(s)

1 2 > >>