##plugins.themes.bootstrap3.article.main##

Fouzia Rahli Hanane Chentouf Rym Terbeche Souad Chougrani Charihane Djemah

Abstract

Biological method has evolved to become an important field of nano-biotechnology due to its harmless nature, to be fast and cost-effective. Silver nanoparticles (SNPs) have been the research topic for their unique properties such as diagnosing, treating, and preventing various diseases in all aspects of human life. This work aimed to establish an extracellular and intracellular synthesis of SNPs from Fusarium oxysporum, focusing on evaluating their technological potential. The SNPs thus synthesized were visually characterized by the change of colour then confirmed by Ultra-violet (UV) Visible spectroscopy. The evaluation of the antimicrobial activity against Proteus mirabilis; Streptococcus bovis; Staphylococcus epidermidis; S. aureus; Salmonella typhi; Escherichia. coli and Candida albicans showed a very effective inhibitory with 18±0.66mm as a highest value. The antioxidant activity was tested using the DPPH method, and the synthesized nanoparticles recorded a remarkable percentage of free radical scavenges at 82,12 ± 0,42%, 70,46 ± 1,53% and 72,65 ± 1,33% for aqueous fungal extract, cell filtrate and biomass, respectively. The ability of the SNPs to detect hydrogen peroxide was illustrated by discoloration of the synthetic mixture, then confirmed by decreasing towards the disappearance of the characteristic peak. Finally, the photocatalytic performance was studied by the degradation of methylene blue. This activity showed a very interesting decrease in the peak intensity characteristic of this dye. In conclusion, synthesizing SNPs using F. oxysporium has proved their important technological property for the biological activities investigated.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

AgNPs, Biological activities, Fungus, Green synthesis, Nanobiotechnology

References
Adebayo, E. A., Ibikunle, J. B., Oke, A. M., Lateef, A., Azeez, M. A., Oluwatoyin, A. O. & Hakeem, A. S. (2019). Antimicrobial and antioxidant activity of silver, gold and silver-gold alloy nanoparticles phytosynthesized using extract of Opuntiaficus-indica. Reviews on Advanced Materials Science, 58(1), 313-326. https://doi.org/10.1515/rams-2019-0039
Agrawal, K., Gupta, V. K. & Verma, P. (2022). Microbial cell factories a new dimension in bio-nanotechnology: exploring the robustness of nature, Critical Reviews in Microbiology, 48:4, 397-427. DOI: 10.1080/1040841X.20 21.1977779
Ahmed, A. A., Haider, H. & Mohammed, M. (2018). Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turkish Journal of Biology, 42, 54-62. https://doi.org/10.3906/biy-1710-2
Ashajyothi, C., Praburajeshwar, C., Harish, K. H. & Chandrakanth, K. R. (2016). Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: an eco-friendly approach. Environ. Nanotechnol. Monit. Manage., 5, 81-87. doi:10.1016/j.enmm.2016.04.002
Bentabet, N., Boucherit-Otmani, Z. & Boucherit, K. (2014). Composition chimique et activité antioxydante d’extraits organiques des racines de Fredoliaaretioides de la région de Béchar en Algérie. Phytotherapy, 12(6), 364-371. https://doi.org/10.1007/s10298-014-0834-x
Bhakya, S., Muthukrishnan, S., Sukumaran, M. & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. . Applied Nanoscience , 5(5), 755-766. https://doi.org/10.1007/s13204-015-0473-z
Bhat, M. A., Nayak, B. K. & Nanda, A. (2015). Evaluation of Bactericidal Activity of Biologically Synthesised Silver Nanoparticles from Candida albicans in Combination with Ciprofloxacin. Materials Today: Proceedings, 2(9 part A), 4395 - 4401. doi:https://doi.org/10.1016/j.matpr.2015.10.0 36
Birla, S. S., C., S., Gaikwad, A. K. & Rai, G. a. (s.d.). Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions. 2013. doi: https://doi.org/10.1155/2013/796018
Chen, Y., Jingchun, T., Xiaomei, L., Xinwei, R., Meinan, Z. & and Lan, W. (2019). green biosynthesis of silver nanoparticules using Eriobotrya japonica (Thunb.) leaf extract for reductive catalysis. Advanced Functional Nanomaterials and Their Applications, 12(1), 189. doi:https://doi.org/10.3390/ma12010189
Costa Silva, L. P., Oliveira, J. P., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. & Braga, F. R. (2017). Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International Journal of Nanomedicine, 12, 6373-6381.  doi: 10.2147/IJN.S137703
El Domany, B. E., Tamer M., E., Amr E., A. & Ahmed A., F. (2017). Biosynthesis, Characterization, Antibacterial and Synergistic Effect of Silver Nanoparticles using Fusarium oxysporum. Journal of Pure and Applied Microbiology, 11(3), 1441-1446. uilger-Casagrande, & M., R. L. (2019). Synthesis of Silver Nanoparticles Mediated by Fungi : A Review. Frontiers in Bioengineering and Biotechnology, 7. https://dx.doi.org/10.22207/JPAM.11.3.27
Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P. C., Fraceto, L. F. & Lima, R. (2017). Biogenic silver nanoparticles based on trichoderma harzianum : Synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports, 7(1), 44421.
Guilger-Casagrande, M., R., a. & Lima. (2019). Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol., 7, 287. doi:https://doi.org/1 0.3389/fbioe.2019.00287
Hamedi, S., Shojaosadati, S. A. & Mohammadi, A. (2017). Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 167, 36-44. doi:https://doi.org/10.1016/j.jphotobiol.2016.12.025
Atout, H . (2018). Dégradation des polluants organiques par des procédés d’oxydation avancée: synthèse des matériaux photocatalytiques. Ferhat Abbas 1 university. Setif : doctoral dissertation.
Ishida, K., Cipriano, T. F., Rocha, G. M., Weissmüller, G., Gomes, F., Miranda, K. & Rozental, S. (2013). Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Inst. Oswaldo Cruz, 109, 220–228. doi:https://doi.org/10.1590/0074-0276130269
Jahan, I., Erci, F. & Isildak, I. (2021). Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of « Golden Delicious » apple pulp and cumin seeds with antibacterial and antioxidant activity. SN Applied Sciences, 3(1), 94. https://doi.org/10.1007/s42452-020-04046-6
Jain, N., Bhargava, A., Rathi, M., Dilip, R. V. & Panwar, J. (2015). Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles. PLOS ONE, 10(7), 0134337. doi:https://doi.org/10.1371/journal.pone.0134337
Javaid, A., Oloketuyi, S. F., Khan, M. M. & Khan, F. (2018). Diversity of Bacterial Synthesis of Silver Nanoparticles. . BioNanoScience, 8(1), 43-59. https://doi.org/10.1007/s12668-017-0496-x
Karthika, V., Arumugam, A., K., Gopinath, P., Kaleeswarran, M., Govindarajan, N. & Benelli. (2017). Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B Biol., 167, 189-199.
Khan, U., Saleh, T. A., Wahab, A., Khan, M. H., Khan, D., Ullah Khan, W. & Fahad, S. (2018). Nanosilver : New ageless and versatile biomedical therapeutic scaffold. International Journal of Nanomedicine , 13, 733-762. doi: 10.2147/IJN.S153167
Gupta, K., Tejpal, S., Chundawat, N., Ahmad, N. & Nik, M. (2021). Antibacterial, antifungal, photocatalytic activities and seed germination effect of Mycosynthesized Silver Nanoparticules using Fusarium Oxysporum. Platinum open access journal, 11(4), 12082-12091.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J. & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95-101. doi:https://doi.org/10.1016/j.nano.2006.12.001.
Lateef, A., Folarin, B. I., Oladejo, S. M., Akinola, P. O., Beukes, L. S. & Gueguim-Kana, E. B. (2018). Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveriaalliacea L. leaf extract. . Preparative Biochemistry andbiotechnology, 48(7), 646-652. https://doi.org/10.1080/10826 068.2018.1479864
Li, X., Xu, H., Chen, Z. S. & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011. doi:10.1155/201 1/270974
Liao, C. L. & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), 449. https://doi.org/10.3390/ijms20020449
Lu, Z., Rong, K., Li, J., Yang, H. & Chen, R. (2013). Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. . J. Mater. Sci., 24, 1465–1471. doi:10.1007/s10856-013-4894-5
Miri, A., Habib Ollah, S. V. & Mina, S. (2018). Biosynthesis of silver nanoparticles and their role in photocatalytic degradation of methylene blue dye. Research on Chemical Intermediates, 44, 6907–6915. https://doi.org/10.1 007/s11164-018-3529-3
Mohammed, A.E., Bin Baz, F.F. & Albrahim, J.S. (2018). Calligonum comosum and Fusarium sp. extracts as bio-mediator in silver nanoparticles formation: characterization, antioxidant and antibacterial capability. 8(72). https://doi.org/10.1007/s13205-017-1046-5
Mohan, S., Oluwafemi, O. S., George, S. C., Jayachandran, V. P., Lewu, F. B., & Songca, S. P. (2014). Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydrate Polymers, 106, 469-474. https://doi.org/10.1016/j.carbpol.2014.01.008
Mohd Yusof, H., Mohamad, R., & Zaidan, U. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology, 10(57). doi:https://doi.org/10.1186/s40104-019-0368-z
Mostafa, F. A. (2017). Biosynthesis of silver nanoparticles by pathogenic and nonpathogenic strains of Fusarium oxysporum f. sp. lycopersici. 57(2), 345-350. DOI: 10.21608/EJBO.2017.789.1048
Mtimet, I. (2011). Elaboration de surfaces biocides contenant des nanoparticules d’argent. doctorat thesis, Rouen, INSA. https://www.theses.fr/2011ISAM0019
Nasreen, I., Hulkoti, T. & Taranath. (2014). Biosynthesis of nanoparticles using microbes—A review. 121, 474-483. https://doi.org/10.1016/j.colsurfb.2014.05.027
Ozcelik Kazancioglu, E., Meral, A. & Nergis, A. (2021). Photochemical synthesis of bimetallic gold/silver nanoparticles in polymer matrix with tunable absorption properties: Superior photocatalytic activity for degradation of methylene blue. 269, 124734. https://doi.org/10.1016/j.match emphys.2021.124734
Pal, S., Tak, Y. K. & Song, J. M. (2007). Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. . Applied and Environmental Microbiology , 73(6), 1712 - 1720. DOI: https://doi.org/1 0.1128/AEM.02218-06
Patel Rajesh, M. & and Patel Natvar, J. (2011). In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education & Research, 1, 52-68.
Rai, M., Bonde, P., Golinska, J., Trzcińska-Wencel, A. G., A. Abd-Elsalam, S. & Shende, S. G. (2021). Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and Applications. 7(139). doi:https://doi.org/10.3390/jof7020139
Raj, k. b., Renta, C. & Raj (2013). A facile photochemical route for the synthesis of triangular Ag nanoplates and colorimetric sensing of H2O2. journal of photochemestry and Photobiology A: Chemistry, 270, 1-6. https://doi.org/10.1016/j.jphotochem.2013.07.005
Raja, S., Vinayagam, R. & Varadavenkatesan, T. (2015. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability,. Arabian Journal of Chemistry, 10(2), 253-261. https://doi.org/10.1016/j.arabjc.2015.06.023
Roy, A., Onur, Bulut, S. S., Amit, K. & Mandal, a. M. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9, 2673–2702. doi:https://doi.or g/10.1039/C8RA08982E
Salari, Z., Danafar, F., Dabaghi, S. & Ataei, S. A. (2016). Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. Journal of Saudi Chemical Society, 20(4), 459 - 464. doi:https://doi.org/10.1016/j.jscs.201 4.10.0 04
Sherif Moussa, H., Taher A., S. & Hend A., A. (2015). Biosynthesis of size-controlled silver nanoparticles by Fusarium oxysporum, their antimicrobial and antitumor activities. . Journal of Basic and Applied Sciences, 4(3), 225-231.
Sumitha, C. and Senthil, P. S. (2020). Biosynthesis and Characterization of silver nanoparticles by Fusarium sp. and it’s antimicrobial and antioxidant activity. International Journal of Scientific Development and Research, 5, 9. ISSN: 2455-2631.
Tagad, C. K., Kim, H. U., Aiyer, R. C., More, P., Kim, T., Moh, S. H. & Sabharwal, S. G. (2013). A sensitive hydrogen peroxide optical sensor based on polysaccharide stabilized silver nanoparticles. RSC Adv, 3(45), 22940-22943. doi:10.1039/C3RA44547J.
Umoren, S., Obot, I. & Gasem, Z. (2014). Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. 5(3), 907–914.
Zielonka, A., & Klimek-Ochab, M. (2017). Fungal synthesis of size-defined nanoparticles. 8(4).
Section
Research Articles

How to Cite

Biosynthesis of silver nanoparticles by using Fusarium oxysporum and their therapeutic applications. (2022). Journal of Applied and Natural Science, 14(4), 1141-1151. https://doi.org/10.31018/jans.v14i4.3788