##plugins.themes.bootstrap3.article.main##

N. Rukmani T. Chitdeshwari P. Malarvizhi M. Maheswari S. Karthikeyan S. Marimuthu

Abstract

Sulphur and micronutrients play a vital in the growth and development of plants due to their catalytic effect on many metabolic processes. A field experiment was conducted to explore the changes in various biochemical constituents and antioxidants enzyme activities in response to coated multi-nutrient fertilization. The experiment consisted of five organic acids (citric acid, humic acid, fulvic acid, salicylic acid) and amino acid (glycine) coated multi-nutrient fertilizer sources applied at five different levels (0, 5, 10, 12.5 and 15 kg ha-1). Groundnut leaf samples were collected and analyzed for biochemical constituents such as proline, soluble protein and antioxidant enzymes viz., superoxide dismutase, catalase, peroxidase and carbonic anhydrase activities at harvest stages. The results revealed that, application of fulvic acid coated multi-nutrient fertilizer at 15 kg ha-1 registered lesser proline (5.93 µmoles g-1) and higher soluble protein (22.2 mg g-1) content, superoxide dismutase (8.93 EU mg-1), catalase (18.2 µg H2O2 min-1 g˗1), peroxidase (6.11 µg min-1 mg˗1) and carbonic anhydrase (14.8 EU mg-1) activities at harvest stage followed by 12.5 kg humic acid coated multi-nutrient fertilizer. The lesser response was noted with NPK control in influencing the biochemical constituents and antioxidant enzymes. It was concluded that fulvic coated multi-nutrient fertilizer at 15 kg ha-1 was the better source for improving the biochemical constituents and antioxidant enzymes of groundnut in calcareous soils.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antioxidant enzymes, Biochemical constituents, Calcareous soil, Coated multi-nutrient fertilizer, Groundnut

References
Abdel Latef, A.A. & Tran L.S.P. (2016). Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science, 7 (243),1-10. https://doi.org/10.3389/fpls.2016.00243
Aghazadeh, M., Karimzadeh, I., Doroudi, T., Ganjali, M. R., Kolivand, P. H. & Gharailou, D. (2017). Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine. Applied Physics A, 123(8), 1-10. https://doi.org/1 0.1007/s00339-017-1145-5
Ahmadinejad, F., Geir Møller, S., Hashemzadeh-Chaleshtori, M., Bidkhori, G. & Jami, M. S. (2017). Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants, 6(3),51-.66. https://doi.org/10.3390/antiox6030051
Ardic, M., Sekmen, A.H., Tokur, S., Ozdemir, F. & Turkan, I. (2009). Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biology. 11(3), 328–338. https:// doi.org/10.1111/j.1438-8677.2008.00132.x.
Arias-Baldrich, C., Bosch, N., Begines, D., Feria, A. B., Monreal, J. A. & García-Maurino, S. (2015). Proline synthesis in barley under iron deficiency and salinity. Journal of Plant physiology, 183, 121-129. https://doi.org/10.1016/j.jplph.2015.05.016
Avalos-Llano, K. R., Martín-Belloso, O. & Soliva-Fortuny, R. (2018). Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut strawberries. Food Chemistry, 264, 393-400. https://doi.org/10.1016/j.foodch em.2018.05.028
Bates, L. S., Waldren, R. P.& Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1) 205-207. https://doi.org/10.1007/BF0 0018060
Beau-champ, C. & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Cao, X., Cai, C., Wang, Y. & Zheng, X. (2018). The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innovative Food Science & Emerging Technologies, 45, 169-178. https://doi.org/10.1016/j.ifset.2017.09.0 18
Chen, Q., Peng, W., Yu, R., Tao, G. & Nimbalkar, S. (2021). Laboratory investigation on particle breakage characteristics of calcareous sands. Advances in Civil Engineering, 2021, 1 - 8. https://doi.org/10.1155/2021/886 7741
Cruz, D.F., Bortoletto-Santos, R., Guimaraes G.G.F., Polito. W.L. & Ribeiro, C. (2017). Role of polymeric coating on the phosphate availability as a fertilizer: insight from phosphate release by castor polyurethane coatings. Journal of Agricultural and Food Chemistry, 65(29), 5890-5895. https://doi.org/10.1021/acs.jafc.7b01686
Feng, C., Lu. S., Gao, C., Wang, X., Xu. X., Bai, X. & Wu, L. (2015). “Smart” fertilizer with temperature-and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustainainable Chemistry and Engineering, 12, 3157-3166. https://doi.org/10.1021/acssuschemeng.5b01384
Foyer, C.H. (2020). Making sense of hydrogen peroxide signals. Plant Biology. 578, 518–519.
Hatch, M.D., & Burnell, J.N. (1990). Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiology, 93 (2), 825-828. https://doi.org/10.1104/pp.93.2.825
Heidari, M. & Sarani, S. (2012). Growth, biochemical components and ion content of Chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. Journal of the Saudi Society of Agricultural Sciences, 11(1), 37-42. https://doi.org/10.1016/j.jssas.2011.05.002
Hines, K. M., Chaudhari, V., Edgeworth, K. N., Owens, T. G. & Hanson, M. R. (2021). Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proceedings of the National Academy of Sciences, 118(33), e2107425118. https://doi.org/10.1073/pnas. 2107425118
INDIASTAT (2021-22). Area, Production and Productivity of Crops in India. Directorate of Economics and Statistics, Department of Agriculture, Cooperation and Farmers Welfare.
Jackson, M. L. (1973). Soil chemical analysis, Prentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
Kaya, C., Ashraf, M. & Akram, N. A. (2018). Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime. Environmental Science and Pollution Research, 25(13), 12612-12618. https://doi.org/10.1007/s113 56-018-1510-8
Keleş, Y., Ergun, N. & Oncel, I. (2011). Antioxidant enzyme activity affected by high boron concentration in sunflower and tomato seedlings. Communications in Soil Science and Plant Analysis, 42(2), 173-183. https://doi.org/1 0.1080/00103624.2011.535068
Krishnaprabu, N., Swaminathan, C., Swaminathan, V., Balakrishnan, K. & Baskar, K. (2016). Stress induced biochemical alteration of Proline in Pigeonpea-Small Millets Peanut Based Rainfed cropping system. Social and Natural Science Journal, 4 (6), 99-108.
Lewis, D.H. (2019). Boron: the essential element for vascular plants that never was. New Phytologist Foundation. 221 (4), 1685–1690. https://doi.org/10.1111/nph.15519
Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F. & Tan, D. (2021). Physiological effects of humic acid in peanut growing in continuous cropping soil. Agronomy Journal, 113(1), 550-559. https://doi.org/10.1002/agj2.20482
Lindsay, W. L. & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi. org/10.2136/sssaj1978.03615995004200030 0 09x
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
Manaf, A., Akhtar, M.N., Siddique, M.T., Iqbal, M. & Ahmed, H. (2017). Yield and quality of groundnut genotypes as affected by different sources of sulphur under rainfed conditions. Soil and Environment, 36(2), 146-153. https:// doi.org/10.25252/SE/17/41163
Manasa, V., Hebsur, N.S., Patil, P.L., Hebbara, M., Kumar, B.A. & Gobinath, R. (2020). Fertility status of groundnut growing calcareous Vertisols of Dharwad district, Karnataka. International Research Journal of Pure and Applied Chemistry, 21, 7-19. https:// doi.org/10.9734/irjpac/2020/v21i1430
Meena, H.N. & Shivay, Y. S. (2010). Productivity of short-duration summer forage crops and their effect on succeeding aromatic rice in conjunction with gypsum-enriched urea. Indian Journal of Agronomy, 55(1), 11-15.
Noor, S., Yaseen, M., Naveed, M. & Ahmad, R. (2017). Use of controlled release phosphatic fertilizer to improve growth, yield and phosphorus use efficiency of wheat crop. Pakistan Journal of Agricultural Sciences, 54(4), 541-547. https:// doi.org /10.21162/PAKJAS/18.6533
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. https://doi.org/10.1029/TR025i 006p00914
Poonia, T., Bhunia, S. R. & Choudhary, R. (2022). Effect of Iron Fertilization on Growth, Yield and Economics of Groundnut (Arachis hypogaea L.). International Journal of Economic Plants, 9(1), 038-044. https://doi.org/10.2391 0/2/2022.0440a
Rout, G. R. & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1-24. https://doi.org/10.7831/ras.3.1
Sadasivam, S. & Manikkam A. (1992). Biochemical methods for agricultural sciences, Wiely Estern Ltd., Madras.
Saha, S., Samad, R., Rashid, P. & Karmoker, J. L. (2016). Effects of sulphur deficiency on growth, sugars, proline and chlorophyll content in mungbean (Vigna radiata L. var. BARI MUNG-6). Bangladesh Journal of Botany, 45(2), 405-410.
Saranyadevi, M. & Mohideen, A. K. () A production of groundnut in Tamil Nadu using arima and neural network analysis. International Journal of Mechanical Engineering, 7(5), 964-969.
Sarkar, A., Biswas, D. R., Datta, S. C., Roy, T., Moharana, P. C., Biswas, S. S. & Ghosh, A. (2018). Polymer coated novel controlled release rock phosphate formulations for improving phosphorus use efficiency by wheat in an Inceptisol. Soil Tillage Research, 180, 48-62. https://doi.or g/10.1016/j.still.2018.02.009
Sarkar, J., Chakraborty, N., Chatterjee, A., Bhattacharjee, A., Dasgupta, D. & Acharya, K. (2020). Green synthesized copper oxide nanoparticles ameliorate defense and antioxidant enzymes in Lens culinaris. Nanomaterials, 10(2), 312-349. https://doi.org/10.3390/nano10020312
Schulten, A. & Kramer, U. (2017). Interactions between copper homeostasis and metabolism in plants. Progress in Botany, 79, 111-146. https://doi.org/10.100 7/12 4_2 017_7
Sies, H., Berndt, C. & Jones, D.P. (2017). Oxidative stress. Annual Review in Biochemistry, 86, 715–748.
Silva, V. M., Tavanti, R. F. R., Gratao, P. L., Alcock, T. D. & Dos Reis, A. R. (2020). Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants. Ecotoxicology and Environmental Safety, 201, 110777. https://doi.org/10.1016/j.ecoenv.202 0.11 0777
Snedecor, G.W. & Cochran, W.G. (1967). Statistical methods, 6th edition. Oxford and IBH Publishing Co., Delhi, Bombay, Kolkata
Soares, C., Carvalho, M.E., Azevedo, R.A. & Fidalgo, F. (2019). Plants facing oxidative challenges—a little help from the antioxidant networks. Environmental and Experimental Botany. 161, 4–25. https://doi.org/10.1016/j.envexpbot.201 8.12.009
Srivastava, S.K. (1987). Peroxidase and polyphenol oxidase in Brassica juncea plants infected with Macrophomina phaseolina Goid and their implications in disease resistance. Phytopathology, 120(3), 249-254. https://doi.org/10.1111/j.1439-0434.1987.tb04439.x
Stanford, S. & English, L. (1949). Use of the flame
photometer in rapid soil tests for K and Ca. Agronomy Journal, 41(9), 446-447.
Subbiah, B. V. & Asija, G. L. (1956). A rapid method for the estimation of nitrogen in soil. Current Science, 26, 259-260.
Suganya, A., Saravanan, A. & Manivannan, N. (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis, 51(15), 2001-2021. https://doi.org/10.1080/0010 3624.20 20.182 0030
Taran, N., Batsmanova, L., Kosyk, O., Smirnov, O., Kovalenko, M., Honchar, L. & Okanenko, A. (2016). Colloidal nano molybdenum influence upon the antioxidative reaction of chickpea plants (Cicer arietinum L.). Nanoscale Research Letters, 11 (1), 1–5. https://doi.org/10.1186/s11671-016-1690-4
Tardy, A. L., Pouteau, E., Marquez, D., Yilmaz, C. & Scholey, A. (2020). Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients, 12(1), 228-263. https://doi.org/10.3390/nu12010228
Tavanti, T. R., de Melo, A. A. R., Moreira, L. D. K., Sanchez, D. E. J., dos Santos Silva, R., da Silva, R. M. & Dos Reis, A. R. (2021). Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiology and Biochemistry, 160, 386-396. https://doi.org/10.1016/j.plaphy.2021.0 1.040
Williams, C. H. & Steinbergs, A. (1959). Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Australian Journal of Agricultural Research, 10(3), 340-352. https://doi.org/10.1071/AR9590340
Yasmeen, H., Yaseen, M., Naveed, M., & Arfan, M. (2021). Effect of hormones enriched polymer coated fertilizer on growth, yield and phosphorus use efficiency of wheat (Triticum aestivum L.) under salinity stress. Pakistan Journal of Agricultural Sciences, 58 (3), 905-917. https://doi.org/10.21162/pakjas/21.903
Yin, H., Qi, Z., Li, M., Ahammed, G. J., Chu, X. & Zhou, J. (2019). Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and Environmental Safety, 169, 911-917. https://doi.org/10.1016/j.ecoenv.2018.11.080
Zhu, C. Q., Cao, X. C., Zhu, L. F., Hu, W. J., Hu, A. Y., Abliz, B. & Zhang, J. H. (2019). Boron reduces cell wall aluminum content in rice (Oryza sativa) roots by decreasing H2O2 accumulation. Plant Physiology and Biochemistry, 138, 80-90. https://doi.org/10.1016/j.plaphy.20 19.02.0 22
Section
Research Articles

How to Cite

Changes in biochemical constituents and antioxidant enzyme activity in groundnut (Arachis hypogaea L.) by the addition of coated multi-nutrient fertilization in calcareous soil. (2022). Journal of Applied and Natural Science, 14(4), 1100-1109. https://doi.org/10.31018/jans.v14i4.3762