##plugins.themes.bootstrap3.article.main##

Subha Lakshmi Gopalakrishnan Nair SanthaKumari Samuel GnanaPrakash Vincent

Abstract

Antimicrobial resistance is a major world health concern and drug-resistant Staphylococcus aureus is a serious threat. Due to the emergence of multidrug-resistant bacterial strains, there is an urgent need to develop novel drug targets to meet the challenge of multidrug-resistant organisms. The main objective of the current study was to determine molecular targets against S. aureus using by computational approach. S. aureus was cultured in brain heart infusion broth medium and MRSA (Methicillin resistant S. aureus) protein was extracted acetone-sodium dodecyl sulfate method. The cell lysate was treated with various antibiotics and proteinase K stable proteins were analyzed. The molecular weight of Geninthiocin-targeted protein of interest in S. aureus ranged from 46 to 50 kDa. A prominent protein band in SDS-PAGE indicated that the protein corresponding 50 kDa was resistant against proteinase K. The SDS-PAGE separated sample was excised and trypsinated, and the peptides were characterized using Nano Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) analysis. Spectrum with clusters of molecular peptides and peptide fragments ranging from 110.0716 to 1002.7093 mass/charge ratio (m/z) were displayed against intensity or relative abundance in the excised gel band. The spectral data from nano LC-MS/MS was subjected to mascot search in the NCBIprot database (taxonomy-bacteria (eubacteria), resulting in seven bacterial proteins. Geninthiocin target proteins were determined against MRSA. To conclude, antibiotic target proteins were identified using a machine learning approach and these targets may have a lot of applications in developing a novel lead molecule against drug-resistant bacteria.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bacteria, Drug resistance, Drug target , Geninthiocin, Virulence

References
Asmi, N., Ahmad, A., Natsir, H., Massi, M.N. & Karim, H. (2021). Identification and bioinformatics study of antibacterial peptides from symbiotic bacteria associated with Macroalgae Sargassum sp. Egypt. J. Chem., 64(9), 4883-4888  doi: 10.21608/ ejchem.2021.68242.3492
Chambers, H.F. (2001). The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7(2),178–182. https://doi.org/10.3201/eid0702.010204
Gallagher, S.R. (2012). One-Dimensional SDS Gel Electrophoresis of Proteins. Curr. Protocol. Mol. Biol., 97, 10.2A.1-10.2A.44. https://doi.org/10.1002/047114272 7.m b1002as97
Gaspari, M. & Cuda, G. (2011). Nano LC-MS/MS: a robust setup for proteomic analysis. Meth. Mol. Biol. (Clifton, N.J.). 790, 115-126. https://doi.org/10.1007/978-1-61779-319-6_9
Gatlin, C.L., Pieper, R., Huang, S.T., Mongodin, E., Gebregeorgis, E., Parmar, P. P., Clark, D. J., Alami, H., Papazisi, L., Fleischmann, R. D., Gill, S. R. & Peterson, S. N. (2006). Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics, 6(5), 1530–1549. https://doi.org/10.1002/pmic.200500253
Hinzke, T., Kouris, A,. Hughes, R.A. (2019). More Is Not Always Better: Evaluation of 1D and 2D-LC-MS/MS Methods for Metaproteomics. Front. Microbiol. 10, 238. DOI=10.3389/fmicb.2019.00238
Iniyan, A.M., Wink, J., Landwehr, W., Ramprasad, E.V., Sasikala, C., Ramana, C.V., Schumann, P., Spröer, C., Bunk, B., Joseph, F.J. & Joshua S.A. (2021). Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. J. Antibiot. 74(1), 59-69. https://doi.org/10.1038/s41429-020-0360-z
Iniyan, A.M.,Sudarman, E., Wink, J., Kannan, R.R. & Vincent, S.G.P. (2019). Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J. Antibiot. 72, 99–105. https://doi.org/10.1038/s41429-018-0115-2
Just-Baringo, X.,Albericio, F. & Álvarez, M. (2014). Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs. 12(1), 317–351. https://doi.org/10.3390/md 12010317
Kifelew, L.G., Warner, M.S., Morales, S., Vaughan, L., Woodman, R., Fitridge, R., Mitchell, J.G. & Speck, P. (2020). Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol. 20(1), 1-10. https://doi.org/10.1186/s12866-020-01891-8
Klevens, R.M. Edwards, J.R.,Tenover, F.C. McDonald, L.C., Horan, T. & Gaynes, R. (2006). National Nosocomial Infections Surveillance System. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. Clin. Infect. Dis. 42(3), 389-91. https://doi.org/10.1086/499367
Kong. K.F.,Schneper, L. & Mathee, K. (2010). Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS J. Pathol. Microbiol. Immunol. 118(1), 1-36. https://doi.org/10.1111/j.1600-0463.2009.02563.x
Lai, E.M.,Phadke, N.D.,Kachman, M.T., Giorno, R., Vazquez, S., Vazquez, J.A., Maddock, J.R. & Driks, A. (2003). Proteomic analysis of the spore coats of Bacillus subtilisandBacillus anthracis. J. Bacteriol. 185(4), 1443-54. https://doi.org/10.1128/JB.185.4.1443-1454.2003
Li, S., Hu, X., Li, L., Liu, H. Yu, L., You, X., Jiang, B. & Wu, L. (2019). Geninthiocins C and D from Streptomyces as 35-membered macrocyclicthiopeptides with modified tail moiety. J. Antibiot. (Tokyo). 72(2), 106-110. https://doi.org/10.1038/ja.2015.70
Lomenick, B., Jung, G.,Wohlschlegel, J.A. & Huang J. (2011). Target identification using drug affinity responsive target stability (DARTS). Curr. Protocol Chem. Biol. 3(4), 163–180. https://doi.org/10.1073/pnas.0910040106
Pai, M.Y., Lomenick, B., Hwang, H., Schiestl, R., McBride, W., Loo, J.A. & Huang, J. (2015). Drug affinity responsive target stability (DARTS) for small-molecule target identification. Meth. Mol. Biol. 1263, 287-98. https://doi.org/10.1007/978-1-4939-2269-7_22
Emerson, R., Procópio, D.L., Reis, I., Kassawara, M., Lúcio, J., Azevedo, D., Magali, J. & Araújo, D., 2012. Review article Antibiotics produced by Streptomyces. Br. J. Infect. Dis. 16, 466-471. https://doi.org/10.1016/j.bjid.20 12.08.014
PubChem database. National Center for Biotechnology Information, (2021). https://pubchem.ncbi.nlm.nih.gov. PubChem Compound Summary for CID 16129809, Geninthiocin.
Richards, M.J., Edwards, J.R., Culver, D.H. & Gaynes, R.P. (1999). Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27(5), 887-92. https://doi.org/10.1097/00003246-199905000-00020
Saumya, B. & Paul, D. (1983), simple and rapid method for destruction of bacteria for protein studies. Appl. Environ. Microbiol. 46, 941-3.
Schelli, K., Rutowski, J., Roubidoux, J. & Zhu, J. (2017). Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling. J. Chromatogra. B, 1047, 124-130.https://doi.org/10.1016/j.jchro mb.2 01 6 .05.052
Schneider, O.,Simic, N., Aachmann, F.L., Rückert, C., Kristiansen, K.A., Kalinowski, J., Jiang, Y., Wang, L., Jiang, C.L., Lale, R. & Zotchev, S.B. (2018). Genome Mining of Streptomyces sp. YIM 130001 Isolated From Lichen Affords New Thiopeptide Antibiotic. Front. Microbiol. 19(9), 3139. https://doi.org/10.3389/fmicb.2018.03139
Silver, L.L. (2016). Appropriate Targets for Antibacterial Drugs, Cold Spring Harb. Perspect. Med. 6(12), a030239. https://doi.org/10.1101/cshperspect.a030239
Strausbaugh, L.J., Crossley, K.B., Nurse, B.A., Thrupp, L.D. & SHEA Long-Term–Care Committee. (1996). Antimicrobial resistance in long-term–care facilities. Inf. Cont. Hos. Epidemiol. 17(2), 129-140. https://doi.org/10.108 6/647257
Takahashi, Y. & Nakashima, T. (2018). Actinomycetes, An Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics 7(2), 45. https://doi.org/10.3390/antibioti cs70 20045
Van Chi, P. & Dung, N.T. (2012). 2D-NanoLC-ESI-MS/MS for Separation and Identification of Mouse Brain Membrane Proteins, Chromatography - The Most Versatile Method of Chemical Analysis, Leonardo de Azevedo Calderon IntechOpen. https://doi.org/10.5772/48376
Vijayaraghavan, P., Kalaiyarasi, M. & Vincent, S.G.P., 2015. Cow dung is an ideal fermentation medium for amylase production in solid-state fermentation by Bacillus cereus. J. Gen. Eng. Biotechnol. 13(2), 111-117. https://doi.org/10.1016/j.jgeb.2015.09.004
Section
Research Articles

How to Cite

Identification and molecular characterization of drug targets of methicillin resistant Staphylococcus aureus. (2022). Journal of Applied and Natural Science, 14(4), 1152-1157. https://doi.org/10.31018/jans.v14i4.3693