##plugins.themes.bootstrap3.article.main##

P. Arunkumar J.S. Kennedy D. Rajabaskar P. Aishwarya

Abstract

Pathogens, including tospoviruses, are known to manipulate the behaviour of vectors after virus acquisition by plants to enhance virus transmission. Furthermore, as recently proven in the maize chlorotic mottle virus pathosystem, the vector's choice for virus-infected plants can change to a preference for noninfected plants after virus uptake by the vector. A similar trend was observed in the cowpea - Watermelon Bud Necrosis Virus (WBNV) - Thrips palmi (Karny) pathosystem. Similarly, in the no-choice bioassay, viruliferous T.palmi (carrying WBNV) settled preferentially more on healthy cowpea plants (56%) compared to virus-infected plants (47.3%), whereas non-viruliferous T.palmi settled preferentially more on WBNV infected (58.67%) cowpea plants compared to healthy plants (44%). The changes in preference of thrips towards host plants before and after virus acquisition may be due to the change of volatile cues. This study looked at the headspace volatile composition of healthy and WBNV-infected cowpea plants that attract thrips. Furthermore, the volatile analysis revealed that 1, 2-Propanediamine (0.62%) and Tuaminoheptane (0.55%) from healthy cowpea plants, as well as Tetradecane (0.35%) from WBNV-infected cowpea plants, both have a higher area percent than other volatiles. The amine (53%) and hydrocarbon (69%) groups of volatile organic compounds make up the majority of host volatiles found in healthy and virus-infected plants. The increased contact rates of viruliferous and non-viruliferous T.palmi towards healthy and WBNV-infected host plants could enhance virus transmission if thrips feed on them and acquire the pathogen prior to dispersal and the recorded host volatiles might be useful in vector management in future.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Thrips, Tritrophic interactions, WBNV, VOCs, Virus, Vector and Volatiles

References
Aishwarya, P., Karthikeyan, G., Balakrishnan, N., Kennedy, J. S. & Rajabaskar, D. (2019). Seasonal incidence of melon thrips (Thrips palmi Karny) and watermelon bud necrosis virus (WBNV) in watermelon (Citrullus lanatus). Journal of Entomology and Zoology Studies, 7(3), 1470-1474.
Arunkumar, P., Rajabaskar, D., Kennedy, J. S., Muthukumar, M. & Anandham, R. (2020). Influence of volatiles emitted from watermelon bud necrosis virus (WBNV) infected watermelon plants over healthy plants. Journal of Entomology and Zoology Studies, 8(6), 450-445.
Cannon, R. J. C., Matthews, L. & Collins, D. W. (2007). A review of the pest status and control options for Thrips palmi. Crop Protection, 26(8), 1089-1098. https://doi.org/10.1016/j.cropro.2006.10.023
Daimei, G., Raina, H. S., Devi, P. P., Saurav, G. K., Renukadevi, P., Malathi, V. G. & Rajagopal, R. (2017). Influence of groundnut bud necrosis virus on the life history traits and feeding preference of its vector, Thrips palmi. Phytopathology, 107(11), 1440-1445. https://doi.org/10.1094/PHYTO-08-16-0296-R
Dudareva, N., and Pichersky, E. (2008). Metabolic engineering of plant volatiles. Current Opinion in Biotechnology, 19(2), 181-189. https://doi.org/10.1016/j.copbio.20 08.02.011
Ehlers, J. D. and Hall, A. E. (1997). Cowpea (Vigna unguiculata L. walp.). Field Crops Research, 53(1-3), 187-204. https://doi.org/10.1016/S0378-4290(97)00031-2
Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. (2018). Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annual Review of Entomology, 63, 169-191. https://doi.org/10.1146/annurev-ento-020117-043119
Eigenbrode, S. D., Ding, H., Shiel, P. & Berger, P. H. (2002). Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1490), 455-460. https://doi.org/10.1098/rspb.2001.1909
Fereres, A., Peñaflor, M. F. G., Favaro, C. F., Azevedo, K. E., Landi, C. H., Maluta, N. K., ... & Lopes, J. R. (2016). Tomato infection by whitefly-transmitted circulative and noncirculative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses, 8(8), 225. https://doi.org/10.3390/v8080225
Ghosh, A., Basavaraj, Y. B., Jangra, S. & Das, A. (2019). Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae). Archives of Virology, 164(11), 2799-2804. https://doi.org/10.1007/s00705-019-04381-z
Holkar, S. K., Mandal, B., Reddy, M. K. & Jain, R. K. (2019). Watermelon bud necrosis orthotospovirus-An emerging constraint in the Indian subcontinent: An overview. Crop Protection, 117, 52-62. https://doi.org/10.1016/j.cropro.2018.11.005
Jain, R. K., Bag, S., Umamaheswaran, K. & Mandal, B. (2007). Natural infection by tospoviruses of cucurbitaceous and fabaceous vegetable crops in India. Journal of Phytopathology, 155(1), 22-25. https://doi.org/10.1111/j.1439-0434.2006.01187.x
Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H. & Eigenbrode, S. D. (2004). Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environmental Entomology, 33(5), 1207-1216. https://doi.org/10.1603/0046-225X-33.5.1207
Krishnareddy, M. and Singh, S. J. (1993). Immunology and molecular based diagnosis of tospovirus infecting watermelon. In Golden Jubilee symposium on horticultural research: Changing scenario. Indian Institute of Horticultural Research, Bangalore, India (pp. 247-248).
Kumar, J., Paul, B., Nebapure, S. M. & Singh, S. (2017). Comparative GC–MS analysis of two Brassica rapa L. varieties for identification of volatile compounds. Chem. Sci. Rev. Lett, 6, 884-889
Kumar, R., Mandal, B., Geetanjali, A. S., Jain, R. K., & Jaiwal, P. K. (2010). Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus. Archives of Virology, 155(8), 1361-1365. https://doi.org/10.1007/s00705-010-0687-z
Mandal, B., Jain, R. K., Chaudhary, V. & Varma, A. (2003). First report of natural infection of Luffa acutangula by Watermelon bud necrosis virus in India. Plant Disease, 87(5), 598-598. https://doi.org/10.1094/PDIS.20 03.87.5.598C
Maris, P. C., Joosten, N. N., Goldbach, R. W., & Peters, D. (2004). Decreased preference and reproduction, and increased mortality of Frankliniella occidentalis on thrips‐resistant pepper plants. Entomologia Experimentalis et Applicata, 113(3), 149-155. https://doi.org/10.1111/j.0013-8703.2004.00220.x
Mauck, K. E., Kenney, J. & Chesnais, Q. (2019). Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Current Opinion in Insect Science, 33, 7-18. https://doi.org/10.1016/j.cois.2019.01.001
Monteiro, R. C., Zucchi, R. A. & Mound, L. A. (1995). Record of Thrips palmi karny, 1925 (Thysanoptera, Thripidae) in the state of são paulo, brazil. Brazilian Journal of Agriculture-Revista de Agricultura, 70(1), 53-55.
Moreno-Delafuente, A., Garzo, E., Moreno, A., & Fereres, A. (2013). A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS One, 8(4), e61543. https://doi.org/10.1371/journal.pone.0061543
Moritz, G., Kumm, S. & Mound, L. (2004). Tospovirus transmission depends on thrips ontogeny. Virus Research, 100(1), 143-149. https://doi.org/10.1016/j.virusres.2003.12.022
Nakahara, L. M. (1984). New state record: Thrips palmi Karny. Hawaii pest report. Hawaii Dept. Agric, 4(1), 15.
Ogada, P. A. and Poehling, H. M. (2015). Sex-specific influences of Frankliniella occidentalis (western flower thrips) in the transmission of Tomato spotted wilt virus (Tospovirus). Journal of Plant Diseases and Protection, 122(5-6), 264-274. https://doi.org/10.1007/BF03356562.
Priyanka, R., Nagendran, K., Aravintharaj, R., Balaji, C. G., Mohankumar, S., Renukadevi, P. & Karthikeyan, G. (2019). Characterization and management of watermelon bud necrosis virus infecting watermelon in India. European Journal of Plant Pathology, 153(3), 759-770. https://doi.org/10.1007/s10658-018-1589-2
Rajabaskar, D., Bosque-Pérez, N. A. & Eigenbrode, S. D. (2014). Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Research, 186, 32-37. https://doi.org/10.1016/j.virusres.2013.11.005
Rajabaskar, D., Ding, H., Wu, Y. & Eigenbrode, S. D. (2013). Behavioral responses of green peach aphid, Myzus persicae (Sulzer), to the volatile organic compound emissions from four potato varieties. American Journal of Potato Research, 90(2), 171-178. https://doi.org/10.1007/s12230-012-9282-z
Rajabaskar, D., Ding, H., Wu, Y. & Eigenbrode, S. D. (2013). Different reactions of potato varieties to infection by Potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). Journal of Chemical Ecology, 39(7), 1027-1035. https://doi.org/10.1007/s10886-013-0311-2
Rajabaskar, D., Rabeena, I., Aishwarya, P., Karthikeyan, G., Usharani, T. R. & Kennedy, J. S. (2019). Melon thrips Thrips palmi karny association with bud necrosis disease in watermelon. Indian Journal of Entomology, 81, 4.
Rajabaskar, D., Wu, Y., Bosque‐Pérez, N. A. & Eigenbrode, S. D. (2013). Dynamics of M yzus persicae arrestment by volatiles from Potato leafroll virus‐infected potato plants during disease progression. Entomologia Experimentalis et Applicata, 148(2), 172-181. https://doi.org/10.1111/eea.12087
Rajasekharam, T. (2010). Biological and molecular characterization and management of watermelon bud necrosis virus (Doctoral dissertation, UAS Dharwad).
Ranjithkumar, R., Rajabaskar, D., Balakrishnan, N. & Karthikeyan, G. (2019). Influence of weather parameters with incidence of Mung bean yellow mosaic virus (MYMV) disease and its vector population in Vigna radiata (l.) Wilczek. Annals of Plant Protection Sciences, 27(2), 241-246. https://doi.org/10.5958/0974-0163.2019.00049.1
Rebijith, K. B., Asokan, R., Krishna, V., Ranjitha, H. H., Kumar, N. K., & Ramamurthy, V. V. (2014). DNA barcoding and elucidation of cryptic diversity in thrips (Thysanoptera). Florida Entomologist, 1328-1347.
Reddy, D. V. R., Amin, P. W., McDonald, D. & Ghanekar, A. M. (1983). Epidemiology and control of groundnut bud necrosis and other diseases of legume crops in India caused by tomato spotted wilt virus.
Shalileh, S., Ogada, P. A., Moualeu, D. P. & Poehling, H. M. (2016). Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) via the host plant nutrients to enhance its transmission and spread. Environmental Entomology, 45(5), 1235-1242. https://doi.org/10.1093/ee/nvw102
Shrestha, A., Srinivasan, R., Riley, D. G. & Culbreath, A. K. (2012). Direct and indirect effects of a thrips‐transmitted Tospovirus on the preference and fitness of its vector, F rankliniella fusca. Entomologia Experimentalis et Applicata, 145(3), 260-271. https://doi.org/10.1111/eea.12011
Stafford-Banks, C. A. (2013). Impact of Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus) on Western flower thrips (Frankliniella occidentalis) feeding behaviors and analysis of the adult salivary gland transcriptome. University of California, Davis.
Timko, M. P. & Singh, B. B. (2008). Cowpea, a multifunctional legume. In Genomics of Tropical Crop Plants (pp. 227-258). Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_10
Werner, B. J., Mowry, T. M., Bosque-Pérez, N. A., Ding, H. & Eigenbrode, S. D. (2009). Changes in green peach aphid responses to Potato leafroll virus–induced volatiles emitted during disease progression. Environmental Entomology, 38(5), 1429-1438. https://doi.org/10.16 03/022.038.0511
Whitfield, A. E., Falk, B. W. & Rotenberg, D. (2015). Insect vector-mediated transmission of plant viruses. Virology, 479, 278-289. https://doi.org/10.1016/j.viro l.2015.03.026
Section
Research Articles

How to Cite

Impact of Watermelon bud necrosis virus (WBNV) infected plants on the volatile emission pattern in cowpea plants. (2022). Journal of Applied and Natural Science, 14(SI), 16-23. https://doi.org/10.31018/jans.v14iSI.3558