Rathinam Latha Subramanian Sevarkodiyone Jeyaraj Pandiarajan


Green science has been witnessed in the advancement with nanobiotechnology enriched with nature-associated biogenesis of nanoparticles over the last three decades. Noble elements, including gold and silver, are the most promising developing trend in nanotechnology for designing bioengineering materials that might be used as modern diagnostic instruments and tools to combat major diseases. Silver and gold nanoparticles possess strong antimicrobial, antioxidant, cytotoxic and anticancer properties that enable the development of new processes with enhanced and target-specific actions. Siver and gold nanoparticles were synthesized using Prawn Head Extract (PHE) and characterized in a previous study. The objective of the present work was to investigate the antioxidant, cytotoxicity and anticancer activity of biosynthesized nanoparticles. The antioxidant properties were analysed by the DPPH(2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay, and the IC50 values were 1020 μg/mL for silver nanoparticles and 649 μg/mL for gold nanoparticles. The in vitro cytotoxicity of the vero cell line and anticancer activity in a human breast cancer cell line (MCF-7) were determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The cytotoxicity assay revealed IC50 values of approximately 118.75 and 93.75 μg/mL in silver and gold nanoparticles, respectively. The anticancer activity in the human breast cancer cell line MCF-7 showed IC50 values of approximately 93.75 and 46.8 μg/mL in silver and gold nanoparticles, respectively. The MTT assay, microscopic examination and DNA fragmentation assays confirmed morphological changes, membrane damage, cell shrinkage and mortality. Conclusively, the study revealed dose-dependently promising effects and can be further exploited in the field of biomedicine as a potential source with a standardized protocol for application.


Download data is not yet available.


Metrics Loading ...




Antioxidant, Anticancer, Cytotoxicity DNA fragmentation, Green science

Awasthi, R., Roseblade, A., Hansbro, P.M., Rathbone, M.J., Dua, K. & Bebawy, M. (2018). Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets,19(14),1696-1709. Doi: 10.2174/138945011966 6180326122831.
Aziz, S.G.G., Aziz, S. & Akbarzadeh, G.A. (2017). Advances in silver nanotechnology: An update on biomedical applications and future perspectives.Drug Res, 67(4):198-203. doi: 10.1055/s-0042-112810.(67),198–203.
Barathmanikanth.S., Kalishwaralal, K., Sriram, M., Pandian, S.R., Youn, H.S., Eom, S., & Gurunathan, S.(2010) Antioxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnology, 14(8),16. doi: 10.1186/1477-3155-8-1
Costa, R., Magalhaes, A., Pereira, J., Andrade, P., Valentão, P., Carvalho, M. & Silva, B. (2009). Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis) Food and Chem. Tox,47, 860–865.[PubMed] [Google Scholar]
Devi, G.H., Suruthi, P., Veerakumar, R., Vinoth, S., Subbaiya, R. & Chozhavendahn, S.A.(2019).Review of metallic gold and silver nanoparticles. J. Pharm. Tech, (12), 935- 943.
Donga, S., Bhadu, G.R. & Chanda,S.(2020). Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artif Cells Nanomed Biotechnol, 48(1), 1315-1325. doi: 10.1080/21691401.2020.184347.
Elahi, N., Kamali, M.,Baghersad, M.H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta,184, 537–556.https://doi.org/10.1016/j.talanta.20 18.02.088
Foroozandeh. P. & Aziz, A.A. (2018). Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 25, 13(1),339.doi: 10.1186/s11671-018-2728-6.
Geetha, R., Ashokkumar, T., Tamilselvan, S., Govindaraju, K., Sadiq, M., & Singaravelu, G. (2013). Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol., 4(4-5), 91–98. https://doi.org/10.1007/s12645-013-0040-9.
Halliwell B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
He, Y., Du, Z., Ma, S., Liu, Y., Li, D., Huang, H., Jiang, S., Cheng, S., Wu, W., Zhang, K., & Zheng, X. (2016). Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomedicine,11, 1879–1887. https://doi.org/10.2147/IJN.S103695
Huang, Y. W., Cambre, M., & Lee, H. J. (2017). The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci., 18(12), 2702. https://doi.org/10.3390/ijms18122702
Jahangirian, H., Kalantari, K., Izadiyan, Z., Rafiee-Moghaddam, R., Shameli, K., & Webster, T. J. (2019). A review of small molecules and drug delivery applications using gold and iron nanopartcles. Int. J. Nanomedicine, 14, 1633–1657. https://doi.org/10.2147/IJN.S184723
Jain, P.K.,El-Sayed,I.H. & El-Sayed, M.A.(2007). Au nanoparticles target cancer. Nano Today, 2007; 2: 18-29.https://doi.org/10.1016/S1748-0132(07)70016-6.
Khandel, P., Yadaw, R.K., Soni, D.K. et al. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct. Chem., 8, 217–254. https://doi.org/10.1007/s40097-018-0267-4
Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M.D. & Kalaichelvan, P.T. (2014) Acalypha indica Linn: Biogenic Synthesis of Silver and Gold Nanoparticles and Their CytotoxicEffects against MDA-MB-231, Human Breast Cancer Cells. Biotechnol. Rep, 4, 42-49. https://doi.org/10.1016/j.btre.2014.08.002
Latha, R., Sevarkodiyone,SP. & Pandiarajan J(2022). Multi-Faceted Role of Silver and Gold Nanoparticles Synthesized from Biowaste and its in vitro Antibacterial, Antifungal and Antidiabetic Activities. Lett.Appl. Nanobioscience,11 (1), 3076 – 3092 https://doi.org/10.33263/LIAN BS111.30763092
Li, W., Zhou, J., & Xu, Y. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomed rep, 3(5), 617–620. https://doi.org/10.3892/br.2015.481
Liao, C., Li, Y. & Tjong,S.C.(2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci, Jan 21;20(2):449. doi: 10.3390/ijms20020449.
Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed.: Nanotechnol. Biol. Med. 14(1), 1–12. https://doi.org/10.1016/j.nan o.2017.08.011.
Malvia,S.,  Bagadi, S.A.,  Dubey, U.S.&  Saxene,S. (2017). Epidemiology of breast cancer in Indian women .Asia Pac J Clin Oncol, Aug;13(4), 289-295. doi: 10.1111/ajco.12661. 
Mata, R., Nakkala, J. R., & Sadras, S. R. (2016). Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids surf. B,143: 499–510. https://doi.org/10.1016/j.colsurfb.2016.03.069
May, S., Hirsch, C.,Rippl, A.,Bohmer, N.,Kaiser, J.P., Diener,L.,A. Wichser, A.,Bürkle,A., &Wick. P.(2018)  Transient DNA Damage Following Exposure to Gold Nanoparticles. Nanoscale., 10, 15723–15735. https://doi.org/10.1039/C8NR03612H
Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
Ou, J., Zhou, Z., Chen, Z. & Tan, H. (2019). Optical diagnostic based on functionalized gold nanoparticles. Int. J. Mol. Sci, 20(18), 4346.  https://doi.org/10.3390/ijms20184346.
Parnsamut, C. & Brimson. S. (2015). Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet.Mol.Res. 14(2), 3650–3668. https://doi.org/10.4238/2015.April.17.15
Patra, J. K. & Baek, K. H. (2016). Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET nanobiotechnology, 10(5), 326–333. https://doi.org/10.1049/iet-nbt.2015.0102
Pham-Huy, L. A., He, H. & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. Int J Biomed sci, 4(2), 89–96.
Prasanna, R., Harish, C. C., Pichai, R., Sakthisekaran, D., & Gunasekaran, P. (2009). Anticancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell biology international, 33(2), 127–134. https://doi.org/10.1016/j.cellbi.2008.10.006
Rice-Evans. C.A., Miller, N.J. & Paganga.G.(1997) Antioxidant properties of phenolic compounds. Trends Plant Sci,2(4),152–159.https://doi.org/10.1016/S1360-1385(97)01018-2.
Shende, P., Kasture, P.& Gaud. R.S.(2018). Nanoflowers: the future trend of nanotechnology for multiapplications. Artif Cells Nanomed Biotechnol ,46(1), 413- 422, https://doi.org/10.1080/21691401.2018.1428812
Tailor. C.S & Goyal. A. (2014). Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine, 2014; 1: 244-249.
Tao Wu, Xi Duan, Chunyan Hu, Changqiang Wu, Xiaobin Chen, Jing Huang, Junbo Liu & Shu Cui (2019) Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol , 47:1, 512-523, DOI: 10.1080/21691401.20 18.1560305.
Usman, A. I., Abdul Aziz, A., & Abu Noqta. O. (2018). Application of green synthesis of gold nanoparticles: A Review, Jurnal Teknologi, 81(1). https://doi.org/10.11113/jt.v81.11409
Vijayan, R.,  Joseph, S. & Mathew. B.(2018). Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol, Sep;12(6):850-856.https://doi.org/10.104 9/iet-nbt.2017.0311.
Wang, R., Deng, J.,He, D.,Yang, E.,Yang, W.,Shi, D., Jiang, Y., Qiu, Z., Webster, T.J. & Shen. Y. (2021). PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomed. Nanotechnol. Biol. Med.Jul;35:102313. http://doi: 10.1016/j.nano.20 20.10 2313.
Yen, H. J., Hsu, S. H., & Tsai, C. L. (2009). Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim a der Bergstrasse, Germany), 5(13): 1553–1561. https://doi.org/10.1002/smll.200900126
Yingchoncharoen, P., Kalinowski, D. S., & Richardson. D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is however, to come. Pharmacol Rev., 68(3), 701–787. https://doi.org/10.1124/pr.115.012070.
Zein, R., Alghoraibi, I., Soukkarieh, C., Salman, A. & Alahmad. A. (2020). Invitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon, 6(8), e04594. https://doi.org/10.1016/j.heliyon.2020.e04594
Zhang, X.F., Liu ZG, Shen W, GurunathanS(2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. IJMS,13;17(9):1534.doi: 10.3390/ijms17091534.
Zhang. D., Ma. X.,Gu, Y., Huang, H., Zhang. G.W, (2020).Green synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem,8:799.https://doi.org/10.3389/fchem.2020.00799
Citation Format
How to Cite
Latha, R., Sevarkodiyone, S. ., & Pandiarajan, J. . (2022). Antioxidant, cytotoxicity, and anticancer properties of biofabricated nanoparticles derived from animal source. Journal of Applied and Natural Science, 14(1), 83–93. https://doi.org/10.31018/jans.v14i1.3217
More Citation Formats:
Research Articles