##plugins.themes.bootstrap3.article.main##

S. K. Rajkishore M. Maheswari K. S. Subramanian R. Prabhu G. Vanitha

Abstract

The dynamics of methane emission and its associated soil microflora in rice ecosystem as a response to elevated CO2 concentrations were studied in open top chamber (OTC) conditions. The treatments consisted of three levels of CO2 (396, 550 and 750 µmol mol-1) and three levels of nitrogen (0, 150 and 200 kg ha-1) and replicated five times in a completely randomized design. The data showed that elevated [CO2] significantly (P ? 0.01) increased the DOC throughout the cropping period with the values ranging from 533 to 722 mg L-1 and 368 to 501 mg L-1 in C750 and Camb, respectively. Methane emission rates were monitored regularly during the experiment period and it was revealed that elevated [CO2] had increased the methane emissions regardless of stages of crop growth.  It was observed that methane emissions were significantly higher under [CO2] of 750 µmol mol-1 by 33 to 54 per cent over the ambient [CO2] of 396 µmol mol-1. Consistent with the observed increases in methane flux, the enumeration of methanogens showed a significant (P ? 0.01) increase under elevated [CO2] with the population ranging from 5.7 to 20.1 x 104 CFU g-1 of dry soil and 5.1 to 16.9 x 104 CFU g-1 of dry soil under C750 and Camb concentrations, respectively. Interestingly, even though higher methanotrophs population was recorded under elevated [CO2], it could not circumvent the methane emission. Overall, the results of OTC studies suggest that methane mitigation strategies need to be explored for the future high CO2 environments. 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Elevated CO2, Methane, Methanogens, Methanotrophs, Nitrogen

References
Allen, L.H., Stephan, L., Albrecht, W., Colo´n-Guasp, S.A., Covell, J.T., Baker, D., Pan & Boote, K.J. (2003). Methane emissions of rice increased by elevated carbon dioxide and temperature. J. Environ. Qual., 32, 1978-1991.
Anderson, T.H. & Domsch, K.H. (1986). Carbon link between microbial biomass and soil organic matter. In: Proceedings of the Fourth International Symposium on Microbial Ecology. Eds. F Megusar and M Gantar. Ljubljana, Yugoslavia. pp. 471-476.
Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P.C., Luo, W., Li, G., Xie, Y., Xiong, Y. & Pan, G. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biol., 22, 856-874.
Cardon, Z.G., Hungate, B.A., Cambardella, C.A., Chapin, F.S., Field, C.B., Holland, E.A., & Mooney, H.A. (2001). Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol. Biochem., 33, 365-373.
Cheng, W. & Johnson, D.W. (1998). Elevated CO2, rhizosphere processes and soil organic matter decomposition. Plant Soil, 202, 167-174.
Cheng, W., Yagi, K., Sakai, H. & Kobayashi, K. (2006). Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry, 77, 351-373.
Farrar, J., Hawes, M., Jones, D. & Lindow, S. (2003). How roots control the flux of carbon to the rhizosphere. Ecol., 84, 827-837.
Farrar, J.F. & Jones, D.L. (2003). The control of carbon acquisition by and growth of roots. In: Kroon H de, Visser EJW. Ed: Root Ecology. Springer, Berlin Heidelberg, New York. pp. 90-124.
Gomez, K.A. & Gomez, A.A. (1984). Statistical Procedures for Agricultural Research. John Wiley and Sons, New Delhi, p.680.
Hou, A.X., Chen, G.X., Wang, Z.P., Van Cleemput, O. & Patrick, W.H. (2000). Methane and nitrous oxide emissions from a rice ?eld in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J., 64, 2180-2186.
Hungate, R.S. (1957). Microorganisms in the rumen of cattle fed at a constant ration. Can. J. Microbiol., 3, 289-311.
Ineson, P., Cotrufo, M.F., Bol, R., Harkness, D.D. & Blum, H. (1996). Quanti?cation of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant Soil., 187, 345-350.
Inubushi, K., Cheng, W. & Chander, K. (1999). Carbon dynamics in submerged soil microcosms as in?uenced by elevated CO2 and temperature. Soil Sci. Plant Nutr., 45, 863-872.
Inubushi, K., Cheng, W., Aonuma, S., Hoque, M.M., Kobayashi, K. & Miura, S. (2003). Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy ?eld. Global Change Biol., 9, 1458-1464.
Inubushi, K., Cheng, W., Mizuno, T., Lou, Y., Hasegawa, T., Sakai, H. & Kobayashi, K. (2011). Microbial biomass carbon and methane oxidation in?uenced by rice cultivars and elevated CO2 in a Japanese paddy soil. E. J. Soil Sci., 62, 69-73.
Intergovernmental Panel on Climate Change (2013). Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535.
Intergovernmental Panel on Climate Change (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Eds. V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield), In Press.
Kimball, B.A., Mauney, J.R., Nakayama, F.S. &Idso, S.B. (1993). Effects of increasing CO2 on vegetation. Vegetation, 104/105, 65-75.
Korner, C., Diemer, M., Schappi, B., Niklaus, P.A. & Arnone, J.A. (1997). The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecol., 18, 165-176.
Kruger, M., Frenzel, P. & Conrad, R. (2001). Microbial processes influencing methane emission from rice ?elds. Global Change Biol., 7, 49-63.
Lamborg, M.R. (1983). Microbial effects. In: Lemon, E.R. (Ed.), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Westview Press, Boulder, pp. 131-176.
Li, Z., Yagi, K., Sakai, H. & Kobayashi, K. (2004). In?uence of elevated CO2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4. Plant Soil, 258, 81-90.
Li, S., Song, L., Gao, X., Jin, Y., Liu, S., Shen, Q. & Zou, J. (2017). Microbial abundances predict methane and nitrous oxide fluxes from a windrow composting system. Front. Microbiol., 8, 409.
Liu, Y., Liu, X., Cheng, K., Li, L., Zhang, X., Zheng, J., Zheng, J. & Pan, G. (2016). Responses of methanogenic and methanotrophic communities to elevated atmospheric CO2 and temperature in a paddy field. Front. Microbiol., 7, 1895.
Lu, Y., Wassmann, R.H., Neue, U. & Huang, C. (2000). Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci. Soc. Am. J.,
64, 2011-2017.
Mah, R.S. (1980). Isolation and characterization of Methanococcus mazei. Curr. Microbiol., 3, 321-326.
Montealegre, C.M., Van Kessel, C., Russelle, M.P. & Sadowsky, M.J. (2002). Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant Soil, 243, 197-207.
Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon and organic matter. In: D.L. Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI. pp. 961-1010.
Rajkishore, S.K., Doraisamy, P., Subramanian, K.S. & Maheswari, M. (2013). Methane emission patterns and their associated soil microflora with SRI and conventional systems of rice cultivation in Tamil Nadu, India. Taiwan Water Conservancy, 61(4), 126-134.
Ramasamy, K., Kalaichelvan, G. & Nagamani, B. (1992). Working with anaerobes: methanogens. A Laboratory manual. pp. 94.
Rogers, H.H., Runion, G.B. & Krupa, S.V. (1994). Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut., 83, 155-189.
Satpathy, S.N. (1997). Factors affecting methane emission in tropical rice soil. Ph.D. Thesis, Utkal University, Bhubaneswar.
Schimel, J. (2000). Global change: Rice, microbes and methane. Nature, 403, 375-377.
Schortemeyer, M., Hartwig, U.A., Hendrey, G.R. & Sadowsky, M.J. (1996). Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol. Biochem., 28, 1717-1724.
Seiler, W., Holzapfel-Pschorn, A., Conrad, R. & Scharffe, D. (1984). Methane emission from rice paddies. J. Atmos. Chem., 1, 241-268.
Singh, J.S. (2011). Methanotrophs: the potential biological sink to mitigate the global methane load. Curr. Sci., 100 (1), 29-30.
Smith, J.L. & Paul, E.A. (1990). The signi?cance of soil microbial biomass estimates. In Soil Biochemistry. Eds. J Bollag and G Stotsky. Mercel Dekker, New York. pp. 357-393.
Tiensing, T., Preston, S., Strachan, N. & Paton, G.I. (2001). Soil solution extraction techniques for microbial toxicity testing: A comparative evaluation. J. Environ. Monit., 3(1), 91-96.
Tokida, T., Fumoto, T., Cheng, W., Matsunami, T., Adachi, M., Katayanagi, N., Matsushima, M., Okawara, Y., Nakamura, H., Okada, M., Sameshima, R. & Hasegawa, T. (2010). Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy ?eld: impact assessment and stoichiometric evaluation. Biogeosci., 7, 2639-2653.
USDA classification (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Eds. Soil Survey Staff. United States Department of Agriculture, Agriculture Handbook 436. PP. 1-886.
van Bodegom, P., Stams, F., Mollema, L., Boeke, S. & Leffelaar, P. (2001). Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere. App. Environ. Microbiol., 67(8), 3586-3597.
van Groenigen, K., Craig, V., Osenberg, W. & Hungate, B.A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 475, 214-216.
van Veen, J.A., Liljeroth, E., Lekkerkerk, L.J.A. & van de Geijn, S.C. (1991). Carbon fluxes in plant soil systems at elevated atmospheric CO2 levels. Ecol. Appl., 1, 175-181.
Wang, C., Jin, Y., Ji, C., Zhang, N., Song, M., Kong, D., Liu, S., Zhang, X., Liu, X., Zou, J., Li, S. & Pan G. (2018). An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies. Agriculture, Ecosystems and Environment, 257, 165-174.
Xu, Z., Zheng, X., Wang, Y., Han, S., Huang, Y., Zhu, J. & Butterbach-Bahl, K. (2004). Effects of elevated CO2 and N fertilization on CH4 emission from paddy rice fields. Glob. Change Biol., 18, 3009.
Yue, J., Liang, W., Wu, J., Shi, Y. & Huang, G. (2003). CH4 and N2O emissions from phaeozem rice ?eld and their mitigative measures. Chin. J. Appl. Ecol., 14, 2015-2018.
Yue, J., Shi, Y., Zheng, X., Huang, G. & Zhu, J. (2007). The in?uence of free-air CO2 enrichment on microorganisms of a paddy soil in the rice-growing season. Applied Soil Ecol., 35, 154-162.
Ziska, L.H., Moya, T .B., Wassmann, R., Namuco, O. S., Lantin, R.S., Aduna, J.B., Bao Jr. E.A., Bronson, K.F., Neue, H.U. & Olszyk, D. (1998). Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Global Change Biol., 4, 657-665.
Section
Research Articles

How to Cite

Influence of elevated carbon dioxide concentrations on methane emission and its associated soil microflora in rice ecosystem. (2021). Journal of Applied and Natural Science, 13(SI), 26-34. https://doi.org/10.31018/jans.v13iSI.2773