Protective effect of ascorbic acid against fenvalerate induced toxicity in air-breathing fish Clarias batrachus
Article Main
Abstract
The food demand in recent times has increased many folds. In order to augment the need for food, the agriculture practice is extensively carried out by the farmers and pesticides are widely used by them for the better yield of crops. Fishes are also cultivated by these farmers, and humans are consuming the fishes as they are very high nutritious food product. But, these pesticides through agricultural runoffs are contaminating the ponds as well the aquatic fauna like fish. The present research work deals with the evaluation of the protective effect of ascorbic acid on fenvalerate induced nephrotoxicity in Clarias batrachus. The pyrethroid pesticide- Fenvalerate EC 20% was administered directly in the water contained in the aquarium at the dose of 0.027 ppm, 0.042 ppm and 0.083 ppm respectively for 96 hrs hours after the dose calculation through LC50. Thereafter, ascorbic acid was administered orally by gastric intubation method at the dose of 200 mg/Kg body weight per day for 04 days to each pesticide treated group. The study revealed that, after the exposure of fenvalerate, there was significant damage at the biochemical levels like urea, creatinine, protein and albumin and histopathological study of kidney tissue in fish C. batrachus. But, after the administration of ascorbic acid, there was a significant restoration in the biochemical levels and in histopathology of the kidney of fish. The study concluded that Ascorbic acid possessed protective effect against fenvalerate induced toxicity in C. batrachus.
Article Details
Article Details
Ascorbic acid , Biochemical assay, Fenvalerate, Histopathological study
Awoyemi, O. M., Kumar, N., Schmitt, C., Subbiah, S., and Crago, J. (2019). Behavioral, molecular and physiological responses of embryo-larval zebrafish exposed to types I and II pyrethroids. Chemosphere. 219: 526-537. doi: 10.1016/j.chemosphere.2018.12.026.
Berthelot, M.P.E. (1859). Berthelot's Reaction Mechanism. Report de Chimie Applique, 2884.
Bhattacharya, M., and Kaviraj, A. (2009). Toxicity of the pyrethroid pesticide fenvalerate to freshwater catfish Clarias gariepinus: Lethality, biochemical effects and role of dietary ascorbic acid. Journal of Environmental Science and Health, 44(6), 578-583. https://doi:10.10 80/03601230903000602.
Binukumari, S., Devi, K. A., and Vasanthi, J. (2016). Applications in environmental risk assessment of biochemical analysis on the Indian freshwater fish, Labeo rohita exposed to monocrotophos pesticide. Environmental Toxicology and Pharmacology, 47,:200-205. https://doi.org/1 0.1016/j.etap.2016.08.014.
Bojarski, B., and Witeska, M. (2020). Blood biomarkers of herbicide, insecticide, and fungicide toxicity to fish -a review. Environmental Science and Pollution Research, 1-15. https://doi.org/10.1007/s11356-020-08248-8.
Bonsnes, R. W. and Taussky, H.H. (1945). On the colorimetric determination of creatinine by Jaffee reaction. Journal of Biological Chemistry, 158: 581-591.
Brander, S.M., Gabler, M.K., Fowler, N.L., Connon, R.E., and Schlenk, D. (2016). Pyrethroid pesticides as endocrine disruptors: Molecular mechanisms in vertebrates with a focus on fishes. Environmental Science & Technology, 50(17), 8977-8992. https://doi:10.1021/acs.est.6b 02253.
Bretschneider, T., Fischer, R., and Nauen, R. (2007). Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). Modern Crop Protection Compounds, 3: 909-926.
Clark, J. M., and Matsumura, F. (1982). Two different types of inhibitory effects of pyrethroids on nerve Ca and Ca+ Mg-ATPase activity in the squid, Loligo pealei. Pesticide Biochemistry and Physiology, 18(2): 180-190.
Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., and Zanella, R. (2018). Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626: 737-743. https://doi.org/10.1016/j.scitote nv.20 18.01.154.
Coats, J. R., Symonik, D. M., Bradbury, S. P., Dyer, S. D., Timson, L. K., and Atchison, G. J. (1989). Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environmental Toxicology and Chemistry: An International Journal, 8(8): 671-679.
Cole, L. M., Lawrence, L. J., and Casida, J. E. (1984). Similar properties of [35S] t-butyl bicyclophosphorothionate receptor and coupled components of the GABA receptor-ionophore complex in brains of human, cow, rat, chicken and fish. Life Sciences, 35(17), 1755-1762. https://doi.org/10.1016/0024-3205(84)90272-8.
Datta, M. and Kaviraj, A. (2003). Ascorbic acid supplementation of diet for reduction of deltamethrin induced stress in freshwater catfish Clarias gariepinus. Chemosphere, 53, 883–888.
Datta-Mitra, A., and Ahmed Jr, O. (2014). Ayurvedic medicine use and lead poisoning in a child: A continued concern in the United States. Clinical Pediatrics, 54(7) 690-692. https://doi.org/10.1177/0009922814553397.
Doumas, B.T., Watson, W.A., and Biggs, H.G. (1971). Albumin standards and the measurement of serum albumin with bromcresol green. Clinica Chimica Acta, 31(1):87-96. https://doi:10.1016/0009-8981(71)90365-2.
Eells, J. T., Rasmussen, J. L., Bandettini, P. A., and Propp, J. M. (1993). Differences in the neuroexcitatory actions of pyrethroid insecticides and sodium channel-specific neurotoxins in rat and trout brain synaptosomes. Toxicology and Applied Pharmacology, 123(1): 107-119. https://doi.org/10.1006/taap.1993.1227.
Elbert, A., Brück, E., Melgarejo, J., Schnorbach, H. J., and Sone, S. (2005). Field development of Oberon® for whitefly and mite control in vegetables, cotton, corn, strawberries, ornamentals and tea. Pflanzenschutz-Nachrichten Bayer, 58(3): 441-468.
Fujimoto, R. Y., Santos, R. F., and Carneiro, D. J. (2013). Morphological deformities in the osseous structure in spotted sorubim Pseudoplatystoma coruscans (Agassiz & Spix, 1829) with vitamin C deficiency. Anais da Academia Brasileira de Ciências, 85(1), 379-384. https://doi:10.15 90/s0001-37652013005000022.
Gamble, M. (2008). The hematoxylin and eosin. In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 6th ed. London (UK): Churchill Livingston/Elsevier Inc. p. 121–134.
Gornall, A. G., Bardawill, C. J., and David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry. 177(2), 751-766.
Hohreiter, D. W., Reinert, R. E., and Bush, P. B. (1991). Effects of the insecticides carbofuran and fenvalerate on adenylate parameters in bluegill sunfish (Lepomis macrochirus). Archives of Environmental Contamination and Toxicology, 21(3): 325-331. https://doi:10.1007/BF010 60 35 3.
Hu, L., Luo, D., Zhou, T., Tao, Y., Feng, J., and Mei, S. (2017). The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis. Environmental Pollution, 231(Pt1), 319?328. doi: https://doi.org/10.1016/j.envpol.2017.08.028 .
Jigyasu, S. K. and Paul, D. K. (2016). Renatosomatic index of a freshwater fish intoxicated with pyrethroid pesticide. Nature Environment and Toxicology.15 (3),963-965.
Katagi, T. (2010). Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Reviews of Environmental Contamination and Toxicology, 204: 1-132. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1440-8_1.
Kumar, P., Prasad, Y., Patra, A. K., Ranjan, R., Swarup, D., Patra, R. C., and Pal, S. (2009). Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Science of the Total Environment, 407(18): 5024?5030. https://doi:10.1016/j.scitotenv.2009.05.030.
Kumari, J., and Sahoo, P. K. (2005). High dietary vitamin C affects growth, non-specific immune responses and disease resistance in Asian catfish, Clarias batrachus. Molecular and Cellular Biochemistry, 280(1-2): 25?33. https://doi:10.1007/s11010-005-8011-z.
Lee, P. W., Stearns, S. M., and Powell, W. R. (1985). Rat metabolism of fenvalerate (Pydrin insecticide). Journal of Agricultural and Food Chemistry, 33(5): 988-993.
Ma, Y., Chen, L., Lu, X., Chu, H., Xu, C., and Liu, W. (2009). Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotoxicology and Environmental Safety. 72(7),1913?1918. https://doi:10.1016/j.ecoenv.2009.07.005.
Matsumura, F. (1983). Influence of chlorinated and pyrethroid insecticides on cellular calcium regulatory mechanisms. In: Miyamoto J, Kearney JC (eds) Mode of action, metabolism and toxicology, vol 3. Pesticide Chemistry: Human Welfare and the Environment. Pergamon Press, NY, pp 3–13.
Merlevede, E. (1950). La vitamine C comme antidote des hydrocarbures aromatiques [Vitamin C as antidote for aromatic hydrocarbons]. Acta medicinae legalis et socialis, 3(1): 27?31.
Mojiri, A., Zhou, J. L., Robinson, B., Ohashi, A., Ozaki, N., Kindaichi, T., and Vakili, M. (2020). Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 126646. https://doi.org/10.1016/j.chemosphere.2020.126646.
Narahashi, T. (1983). Nerve membrane sodium channels as the major target site of pyrethroids and DDT insecticides, toxicity. In Pesticide Chemistry: human welfare and the environment: Proceedings of the 5th International Congress of Pesticide Chemistry, Kyoto, Japan, (Eds., J. Miyamoto and P.C. Kearney). Oxford : Pergamon Press, pp: 109-114.
Narra, M. R., Rajender, K., Rudra, R. R., Rao, J. V., and Begum, G. (2015). The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere, 132:172-178. https://doi:10.1016/j.chemosphere.2015.03.006.
Narra, M. R. 2017. Haematological and immune upshots in Clarias batrachus exposed to dimethoate and defying response of dietary ascorbic acid. Chemosphere, 168: 988-995. https://doi:10.1016/j.chemosphere.2016.10.112.
Manavi, P. N., Mahdavi, E. S., and Mazumder, A. (2018). Organochlorine pesticides in two fish species from the southern Caspian Sea. Marine Pollution Bulletin, 133: 289–293. https://doi.org/10.1016/j.marpolbu l.2018.05.05
Nhu, T. Q., Bich Hang, B. T., Vinikas, A., Bach, L. T., Buu Hue, B. T., Thanh Huong, D. T., Quetin-Leclercq, J., Scippo, M. L., Phuong, N. T., and Kestemont, P. (2019). Screening of immuno-modulatory potential of different herbal plant extracts using striped catfish (Pangasianodon hypophthalmus) leukocyte-based in vitro tests. Fish & Shellfish Immunology, 93: 296–307. https://doi.org/10.101 6/j.fsi.2019.07.064.
Pico, Y., Belenguer, V., Corcellas, C., Diaz-Cruz, M. S., Eljarrat, E., Farré, M., and Barcelo, D. (2019). Contaminants of emerging concern in freshwater fish from four Spanish Rivers. Science of the Total Environment, 659: 1186–1198. https://doi.org/10.1016/j.scitotenv.2018.12.3 6 6.
Ramesh, M., Sankaran, M., Veera-Gowtham, V., and Poopal, R. K. (2014). Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chemico-biological Interactions, 207: 67–73. https://doi.org/10.1016/j.cbi.2013.10.018.
Sabarwal, A., Kumar, K., and Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. Environmental Toxicology and Pharmacology,63:103-114. https://doi:10.1016/j.etap.2018.08.018.
Sharma, G., and Singh, S. (2004). Studies on the effect of intoxicant indofil on the blood morphology of Channa punctatus (Bloch.). Bionotes, 6(1): 20.
Sharma, G., and Singh, S. (2006). Assay of some blood parameters of the fish, Channa punctatus (Bloch.) after intoxication of indofil. Bionotes, 8(1): 21.
Sun, H., Xu, XL., Xu, LC., Song, L., Hong, X., Chen, JF., Cui, LB., and Wang, XR. (2007). Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere, 66(3): 474-479. https://doi:10.1016/j.chemosphere.2006.05.059.
Tripathi, G. (1992). Relative toxicity of aldrin, fenvalerate, captan and diazinon to the freshwater food-fish, Clarias batrachus. Biomedical and Environmental Sciences, 5(1): 33–38.
Tripathi, G., and Verma, P. (2004). Fenvalerate-induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein. Comparative Biochemistry and Physiology. Part C: Toxicology & Pharmacology. 138(1): 75–79. https://doi.org/10.1016/j.cca.2004.05.005.
Vale, J. A., and Kulig, K. (2004). American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists "Position paper: gastric lavage". Journal of Toxicology: Clinical Toxicology, 42 (7): 933–943. https://doi:10.1081/CLT-200045006.
Vallejos-Vidal, E., Reyes-López, F., Teles, M., and MacKenzie, S. (2016). The response of fish to immunostimulant diets. Fish & Shellfish Immunology. 56:34–69. https://doi.org/10.1016/j.fsi.2016.06.028.
Velmurugan, B., Selvanayagam, M., Cengiz, E. I., and Unlu, E. (2007). The effects of fenvalerate on different tissues of freshwater fish Cirrhinus mrigala. Journal of Environmental Science and Health, Part B. 42(2):157-163. https://doi:10.1080/03601230601123292.
Velmurugan, B., Senthilkumaar, P., and Karthikeyan, S. (2018). Toxicity impact of fenvalerate on the gill tissue of Oreochromis mossambicus with respect to biochemical changes utilizing FTIR and principal component analysis. Journal of Biological Physics, 44(3): 301-315. https://doi:10.1007/s10867-018-9484-9.
Vieira, C., and Dos Reis Martinez, C. B. (2018). The pyrethroid ?-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. Chemosphere, 210: 958–967.
Woo, S. J., Kim, N. Y., Kim, S. H., Ahn, S. J., Seo, J. S., Jung, S. H., Cho, M. Y., and Chung, J. K. (2018). Toxicological effects of trichlorfon on hematological and biochemical parameters in Cyprinus carpio L. following thermal stress. Comparative Biochemistry and Physiology. Toxicology & Pharmacology. 209: 18–27. https://doi.org/10.1016/j.cbpc.2018.03.001.
Yang, C., Lim, W., & Song, G. (2020). Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 234: 108758. https://doi.org/10.1016/j.cbpc.2020.108758.
Zhang, Q., Zhang, Y., Du, J., and Zhao, M. (2017). Environmentally relevant levels of ?-cyhalothrin, fenvalerate, and permethrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo. Chemosphere, 185: 1173-1180.https://doi:10.1016/j.chemosphere.2017.07.091.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)