##plugins.themes.bootstrap3.article.main##

Surindra Negi Vir Singh

Abstract

Nanotechnology deals with the particles of diameter size less than 100 nm. Nanoparticles are different from their bulk counterparts due to their distinctive shapes and sizes. They provide larger surface area, essential to carry out different chemical reactions. Other than the physical and chemical methods of nanoparticle synthesis, biological method is getting more popularity, as the process is less toxic, cost effective and eco-friendly. Various biological sources such as algae, plants, bacteria, fungi etc. have been explored for their potential to synthesize nanoparticles. In the literature, algae was found to be more reliable source for the green synthesis of metal nanoparticles as they are readily available in nature and are easy to grow in normal conditions. Metal nanoparticles like gold, silver and iron synthesized from algal source have widespread application in treating environmental pollutants like heavy metal removal, degradation of organic dyes, antimicrobial
agents etc.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Algae, Bioreduction, Metal nanoparticles, Nanotechnology, Reducing agent

References
Abdelghany, T. M., Al-Rajhi, A.M. H., Al Abboud, M. A., Alawlaqi, M. M., Magdah, A. G., Helmy, E. A. M., Mabrouk, A. S. (2017). Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoSci. DOI 10.1007/s12668-017-0413-3.
Aboelfetoh, E. F., El-Shenody, R. A., Ghobara, M. M. (2017). Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpaserrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 189:349.
Ahmed, S., Saifullah, Ahmad, M., Swami, B. L. and Ikram S. (2016).Green synthesis of silver nanoparticles using Azadirachtaindica aqueous leaf extract.Journal of Radiation Research and Applied Sciences, 9: 1-7.
Ashok kumar, T. and Vijayaraghavan, K. (2016). Brown seaweed-mediated biosynthesis of gold nanoparticles. Journal of Environment and Biotechnology Research, 2(1): 45-50.
Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., and Prasad R. (2015). Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial and Photocatalytic Properties NAFE. Langmuir, 31(42): 11605–11612.
Azizi, S., Namvar, F., Mahdavi, M., Ahmad, M. B. and Mohamad, R. (2013).Biosynthesis of silver nanoparticles using brown marine Macroalga, SargassumMuticum aqueous extract. Materials, 6: 5942-5950.
Bansal, M., Bansal, A., Sharma, M., and Kanwar, P. (2015).Green synthesis of gold and silver nanoparticles.Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3): 1710–1716.
Dahoumane, S.A., Yéprémian, C., Djédiat, C., Couté, A., Fiévet, F., Coradin, T., and Brayner, R. (2016). Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga.Journal of Nanoparticle Research, Springer Verlag, 18 (3): 79.
Davis, T. A., Voleskya, B. and Muccib, A. (2003).A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37: 4311–4330.
Edison, T. N.J. I., Atchudan, R., Kamal, C. and Lee, Y. R. (2016).Caulerparacemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methyleneblue. Bioprocess Biosyst. Eng, 39:1401–1408
El-Kassas H.Y., El-Sheekh, M. M. (2014).Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention, 15(10): 4311-7.
Eroglu, E., Chen, X., Bradshaw, M. et al. (2013). Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Advances, 3: 1009–1012.
Fawcett, D., Jennifer, J. V., Shah, M., Sharma, S. B., Gérrard, E. J. P. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 15 Article ID 8013850.
Ghodake, G. and Lee, D. S. (2011). Biological Synthesis of Gold Nanoparticles Using the Aqueous Extract of the Brown Algae Laminaria Japonica. Journal of Nanoelectronics and Optoelectronics 6, (3) 268-271.
González-Ballesteros, N., Prado-López, S., Rodríguez-González, J.B., Lastra, M., Rodríguez-Argüelles, M.C (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces B: Biointerfaces, 153: 190-198.
González-Ballesterosa, N., Prado-Lópezb, S., Rodríguez-Gonzálezc, J.B., Lastrad, M. and Rodríguez-Argüellesa, M.C. (2017). Green synthesis of gold nanoparticles using brown algae Cystoseirabaccata: Its activity in colon cancer. Colloids and Surfaces B: Biointerfaces, 153: 190–198.
Goodsell, D. S. (2004). Bionanotechnology: Lessons from Nature, John Wiley & Sons, Hoboken, NJ, USA.
Gottimukkala, K.S.V. (2017). Green synthesis of iron nanoparticles using green tea leaves extract. Journal of Nanomedicine & Biotherapeutic Discovery, 7:1.
Hulkoti, N.I. and Taranath, T.C. (2014).Biosynthesis of nanoparticles using microbes–a review. Colloids and Surfaces B: Biointerfaces, 121: 474-483.
Jena, J., Pradhan, N., Dash, B.P., Sukla, L.B. and Panda, P.K. (2012).Biosynthesis and characterization of silver nanoparticles using microalgae Chlorococcum humicolaand its antibacterial activity. International Journal of Nanomaterials and Biostructures, 3(1):1-8
Kannan, R.R.R., Stirk, W.A. and Staden,J. V. (2013). Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). South African Journal of Botany, 86: 1–4.
Kathiraven, T., Sundaramanickam, A., Shanmugam, N. and Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5: 499–504.
Kubik, K. B. and Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine, BioSystems, 65, no. 2-3, 123–138.
Kuyucak, N., Volesky, B. (1989). Accumulation of gold by algal biosorbent. Biogeosciences, 1:189–204.
Li, L. and Zhang, Z. (2016). Biosynthesis of gold nanoparticles using green alga Pithophoraoedogonia with their electrochemical performance for determining carbendazim in soil. International Journal of Electrochemical Science, 11: 4550 – 4559.
Luangpipat, T., Beattie, I. R., Chisti, Y. and Haverkamp, R. G. (2011). Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research, 13: 6439–6445.
Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., &Kalinina, N. O. (2014). “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. ActaNaturae, 6(1): 35–44.
Maliszewska, I., Juraszek, A. and Bielska, K. (2014).Green Synthesis and Characterization of Silver Nanoparticles Using Ascomycota Fungi Penicilliumn algiovense AJ12. Journal of Clusture Science, 25: 989–1004.
Merin, D. D., Prakash, S. and Bhimba, B.V. (2010). Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pacific Journal of Tropical Medicine, 797-799.
Momeni, S. and Nabipour, I. (2015). A simple green synthesis of palladium nanoparticles with Sargassum algae and their electrocatalytic activities towards hydrogen peroxide. Applied Biochemistry and Biotechnology, 176(7): 1937-49.
Montasser, M. S., Hegazi, M.M., Younes, A. M.,  Dashti, N. H., El-Sharkawey, A. E. (2017). Effect of Gold Chloride Concentration and Volume on Size and Shape of Biological Synthesized Gold Nanoparticles (AuNPs) Using Red Algae (Laurenciapapillosa). Science of Advanced Materials, 9 (7): 1105-1113(9).
Moorthi, P.V., Balasubramanian, C. and Mohan, S. (2015). Appllied Biochemistry and Biotechnology, 175: 135.
Namvar, F., Azizi, S., Ahmad, M. B., Shameli, K., Mohamad, R., Mahdavi, M. and Tahir, P. M. (2014).Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Research on Chemical Intermediates, 41 (8): 5723-5730.
Naveena, B. E., and Prakash, S. (2013). Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian Journal of Pharmaceutical and Clinical Research, 6(2): 179-182.
Oza, G., Pandey, S., Mewada, A., Kalita, G. and Sharon, M. (2012).Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of freshwater alga Chlorella pyrenoidusa. Advances in Applied Science Research, 3(3): 1405-1412.
Parial, D. and Pal, R. (2015). Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. Journal of Applied Phycology 27: 975.
Prasad, B. S. N., Padmesh, T.V.N., Kumar, V. G. and Govindaraju, K. (2015). Seaweed (SargassumwightiiGreville) assisted green synthesis of palladium nanoparticles. Research J. Pharm. and Tech,. 8(4).
Prasad, T. N. V. K. V., Kambala, V.S. R. and Naidu, R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of Applied Phycology, 25:177–182.
Rajathi, F. A. A., Parthiban, C., Kumar, V. G., Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99: 166–173.
Ramakrishna, M., Babu, D. R., Gengan, R. M. and Rao, S. C. G. N. (2016).Phytoremediation using Wetland Plants: An ecosustainable approach. International Journal of Phytoremediation, 10 (2): 133-160.
Ramakrishna, M., Babu, D. R., Gengan, R. M., Chandra, S. and Rao, G. N. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J. Nanostruct. Chem., 6:1–13.
Rotello, V.M. (2004). Nanoparticles: Building Blocks for Nanotechnology. Springer Science & Business Media: New York, NY, USA.
Sahayaraj, K., Rajesh, S. and Rathi, J.M. (2012). Silver nanoparticles biosynthesis using marine alga Padinapavonica(Linn.) and its microbicidalactivity. Digest Journal of Nanomaterials and Biostructures, 7(4): 1557-1567.
Saif, S., Tahir, A. and Chen., Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6, 209.
Satapathy, S., Shukla, S.P., Sandeep, K. P., Singh, A. R.,  Sharma, N. (2015). Evaluation of the performance of an algal bioreactor for silver nanoparticle production. Journal of Applied Phycology, 27 (1): 285–291.
Selvam, G. G. and Sivakumar, K. (2015). Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis(Wulfen) J.V. Lamouroux. Applied Nanoscience, 5 (5): 617–622.
Senapati, S., Syed, A., Moeez, S., Kumar, A. and Absar, A. (2012). Intracellular synthesis of gold nanoparticles using alga Tetraselmiskochinensis.Materials Letters, 79: 116-11.
Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42 (5): 919-923.
Sharma, A., Sharma, S., Sharma K., Chetri, S. P. K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., Agrawal V. (2016). Algae as crucial organisms in advancing nanotechnology: a systematic review. Journal of Appllied Phycology, 28: 1759–1774.
Shiny, P. J., Mukherjee, A. and Chandrasekaran,N. (2013).Marine algae mediated synthesis of the silver nanoparticles and its antibacterial efficiency. International Journal of Pharmacy and Pharmaceutical Sciences, 5 (2): 239-241.
Singaravelu, G., Arockiamary, J. S., Kumar, V. G., Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville.Colloids and SurfacesB: Biointerfaces, 57: 97–101.
Singh, M., Kalaivani, Manikandan, S., Sangeetha, N. and Kumaraguru K. (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Applied Nanoscience 3: 145–151.
Sinha, S. N., Paul, D., Halder, N., Sengupta, D. and Patra, S. K. (2015).Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.). Applied Nanoscience 5:703–709.
Subramaniam, V. and Suja S. (2012).Green synthesis of silver nanoparticles using Coleus amboinicus lour, antioxidant activity and invitro cytotoxixity against Ehrlich’s Ascite carcinoma. Journal of Pharmacy Research, 5 (2): 1268- 1272.
Subramaniyam, V., Ramraj, S., Bose, S., Thavamani, P., Megharaj, M., Chen, Z. and Naidu, R. (2015). Chlorococcum sp. MM11- a novel Phyco-nanofactory for the synthesis of iron NP. Journal of Appllied Phycology, 27(5): 1861–1869.
Suganya, K. S. U., Govindaraju, K., Kumar, V. G, Dhas, T. S., Karthick, V., Singaravelu, G., and Elanchezhiyan, M. (2015). Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering C, 47: 351–356.
Thakkar, K. N., Mhatre, S. S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6(2): 257-62.
Vadlapudi, V. and Amanchy, R. (2017). Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles from Red Algae, Hypnea musciformis. Advances in Biological Research, 11 (5): 242-249.
Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Ahila, N. K., Jayaraman, R. and Ethiraj, K. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinariaconoides, and their antimicrofouling activity. The Scientific World Journal Volume, Article ID 938272, 10 pages.
Yadav, K. K., Singh, J. K., Gupta, N. and Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. Journal of Materials and Environmental Sciences 8(2): 740-757.
Section
Research Articles

How to Cite

Algae: A potential source for nanoparticle synthesis. (2018). Journal of Applied and Natural Science, 10(4), 1134-1140. https://doi.org/10.31018/jans.v10i4.1878