Ritika Modi Veena Khanna


In pigeonpea due to the prevailing high temperature, poor nodulation have usually been observed as a limiting factor in its productivity. Plant growth promoting traits of 5 pigeonpea rhizobacterial isolates out of 32, selected on the basis of maximum growth at 30, 40 and 50°C, were evaluated for their potential application in enhancing symbiosis and plant growth of pigeonpea. The level of IAA at 30, 40 and 50°C varied from 0.95-20.96 ?g/ml, 1.21- 34.82 ?g/ml and 0.16-17.34 ?g/ml in the presence of tryptophan respectively. Maximum flavonoid production and siderophore production was recorded bacterial isolates with S12p6 (6.68 ?g/ml) at 30°C and S1p1 (4.2 cm) at 40°C respectively. Isolates S1p1 and S12p6 showed relatively superior production of growth hormone, flavonoid-like compounds and siderophores can further be tested as co-inoculant with recommended Rhizobium for studying their efficacy under field conditions for symbiotic parameters and growth of pigeonpea.




Pigeonpea, PGPRs, Rhizobacteria, Rhizobium

Ahmad, F., Ahmad, I. and Khan, M.S. (2008). Screening of free-living rhizobacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-81.
Ali, S. Z., Sadhya, V., Grover, M., Kishore, N., Rao, L. V. and Venkateswarlu, B. (2009). Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 46: 45-55.
Anonymous (2016). Package and practice for Kharif crops. Punjab Agricultural University, Ludhiana, pp 62.
Cappuccino, J. C. and Sherman, N. (1992). Microbiology: A Laboratory Manual: Academic distributors, New York 125-79.
Garcia, J. A. L., Probanza, A., Ramos, B., Barriuso, J. and Mañero, F. J. G. (2004). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Pl. Soil. 267: 143–53.
Gordon, A. S. and Weber, R. P. (1951). Calorimetric estimation of Indole acetic acid. Pl .Physiol. 25:192-95.
Gupta, A. and Gopal, M. (2008). Sideophore producing by plant growth promoting rhizobacteria. Indian. J. Agric. Res. 42 (2): 153-56.
Holt, J. G. N., Krieg, R., Sneath, P. H. A., Stanley, J. T. and Williams, S. T. (ed) (1994). Bergey’s manual of Determinative Bacteriology. The Williams and Wikins Co (Lippincoli, Williams and Wikins), Baltimore.
Karnwal, A. (2009). Production of indol acetic acid by Fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. J. Plant. Pathol. 91(1): 61-3.
Kaur, S. and Khanna, V. (2013). Effect of temperature-tolerant rhizobial isolates as PGPR on nodulation, growth and yield of pigeonpea [Cajanus cajan (L) Milsp.]. J. Food. Legumes. 26(3 & 4): 80-83.
King, E. O., Ward, M. K. and Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorecein. J. Lab. Clin. Med. 44:301-7.
Manasa, K., Subhash, R. R., and Trivenu, S., (2017). In vitro screening of temperature stress tolerance of Rhizobial and Pseudomonas fluorescence isolates. J. Pharmaco. Phytochem. 6(5): 764-67.
Nadeem, S. M., Ahmad, M., Zahir, A. Z., Javaid, A. and Ashraf, M. (2014).The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32: 429-48.
Nehra, K., Yadav, A. S., Sehrawat, A. R. and Vashisha, R. K. (2007). Characterization of heat resistant mutant strains of Rhizobium sp. (Cajanus cajan L.) for growth, survival and symbiotic properties. Ind. J. Microbiol. 4: 329-35.
Parmar, N. and Dadarwal, K. R. (1999). Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J. Appl. Microbiol. 86: 36-44.
Rajkumar, M., Ae, N., Prasad, M.N.V., Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142–149.
Raghuwanshi, A., Dudeja, S. S. and Khurana, A. L. (1994). Effect of temperature on flavonoid production in pigeon pea [Cajanus cajan (L.) Millsp.] in relation to nodulation. Biol. Fertil. Soils. 17: 314-16.
Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophore. Anal. Biochem.160: 47-56.
Singh, Y., Ramteke, P. W. and Shukla, P. K. (2013). Characterisation of Rhizobium isolates of pigeonpea rhizosphere from Allahabad soils and their potential PGPR characteristics. Int. J.Res. Pure. Appl. Microbiol., 3(1):4-7
Srivastava, S., Yadav, A., Seem, K., Mishra, S., Chaudhary, V. and Srivastava, C. S. (2008). Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factors RpoS. Curr. Microbiol. 56: 453-57.
Star, L., Matan, O., Dardanelli, M. S., Kapulnik, Y., Burdman, S. and Okon, Y. (2012). The Vicia sativa spp. nigra–Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Pl. Soil. 356: 165–74.
Tilak, K. V. B. R., Ranganayaki and Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European. J. Soil. Science. 57: 67–71.
Zhishen, J., Mengcheng, T. and Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food. Chem. 64: 555-9.
Research Articles

How to Cite

Evaluation of thermotolerant rhizobacteria for multiple plant growth promoting traits from pigeonpea rhizosphere. (2018). Journal of Applied and Natural Science, 10(1), 518-521. https://doi.org/10.31018/jans.v10i1.1660