##plugins.themes.bootstrap3.article.main##

Sheikh Mohammad Sultan Nilamani Dikshit Chandra Sekhar Mohanty Prasant Kumar Rout Prasant Kumar Rout Susheel Kumar Raina

Abstract

The aim of present study was to investigate protein, oil and fatty acid composition in 11 maize (Zea mays) genotypes collected from diverse locations in the hills of north western Indian Himalayan state of Jammu and Kashmir in order to get an idea about the extent of variability in these biochemical traits in the local germplasm. The study revealed significant variation in these quality traits. The protein content among the genotypes ranged from 10.7% to 18.7% while oil content varied between 2.26% and 4.80%. Higher protein content in some of the genotypes especially IC-0617877 (18.7%) and IC-0617880 (17.6%) is noteworthy. The saturated fatty acids of palmitic (C16:0), stearic (C18:0), arachidic (C20:0) and unsaturated fatty acids of oleic (C18:1), linoleic (C18:1) and elaidic (C18:1) were detected and quantified in these genotypes. Considerable variation has been recorded in fatty acid composition; 13.8-33.4% for palmitic acid, 21.5-48.1% for linoleic acid, 19.2-39% for oleic acid, 0.2-2.4% for elaidic acid, 2.5- 8.5% for stearic acid and 0.1-6.6% for arachidic acid. Higher oleic acid content recorded in all the genotypes excepting IC-0617881 is a useful trait. Strikingly, highest oil (4.80%), palmitic acid (33.4%), stearic acid (8.5%) and arachidic acid (6.6%) contents have been recorded in this remarkably cold tolerant genotype with reddish yellow seeds containing moderate protein content of 13.8 %. The appreciable variation in these quality traits could be exploited in breeding programmes for improvement of this crop and opening up new opportunities for its food and industrial end uses.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Fatty acids, Genotypes, Oil content, Protein content, Zea mays L.

References
Aliu, S., Rusinovic, I., Fetahu, S. and Simeonovska, E. (2012). Genetic diversity and correlation estimates for grain yield and quality traits in Kosovo local maize (Zea mays L.) populations. Acta agriculturae Slovenica, 99: 121-28.
Ambika, R. R., Singh, N., Mahajan, V., Chaudhary, D. P., Sapna, S. and Kumar, R. (2012). Corn Oil: An emerg¬ing industrial product. Technical Bulletin, No. 8, pp. 36, Directorate of Maize Research, New Delhi.
AOAC (1990). Association of Official Analytical Chemists. Methods of the association of official analytical chemists. Method No. 920.85. 15th ed. V. II. Arlington.
Becker, R. (2007). Fatty acids in food cereal grains and grain products. Fatty Acids in Foods and their Health Implications, pp. 303-316.
Chibuike, C. S., Okporie, E. O., Ekwu, L. G., Onyishi, G. C. and Nwogbaga, A. C. (2015). Maize genotypes collection and characterization from local Government areas in Ebonyi state, Nigeria. J. Plant Breed. Genet., 3(1):17-23.
Doebley, J. F. (2004). The genetics of maize evolution. Ann Rev Genet., 38: 37-59.
Egesel, C. O., Kahriman, F. and Corbacioglu, N. (2013). The effects of generation and parents on endosperm protein ratio and change of protein fractions in maize. Anadolu Journal of Agricultural Sciences, 28(3): 150-156.
Egesel, O. C., Kahriman, F. and Gul, M. (2011). Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique. Acta scientarium Agronomy, 33: 613-620.
Enujeke, E. C. (2013). Response of Grain Weight of Maize to Variety, Organic Manure and Inorganic Fertilizer in Asaba Area of Delta State. Asian J. Agric. Rural Dev., 3(5): 234-248.
GEOFIN (2016). GEOFIN Maize Special Report. Geofin Comtrade Ltd. Geofin Research Desk, Kochi-682 024, Kerala.
Hammond, E. G. (1993). Organization of rapid analysis of lipids in many individual plants. pp. 321-330. In: Linskins, H. F. and Jackson, J. F. (Eds.), Modern Methods of Plant Analysis. New Series. Vol. 12. Springer-Verlag, Berlin.
Hegde, D. M. (2012). Carrying capacity of Indian agriculture: oilseeds. Curr Sci., 102: 867- 873.
Ignjatovic-Micic, D., Vancetovic, J., Trabovic, D., Dumanovic, Z., Kostadinovic, M., Bozinovic, S. (2015). Grain nutrient composition of maize (Zea mays L.) drought-tolerant populations. Journal of Agricultural and Food Chemistry, 63(4): 1251-1260.
Lambert, R. J. (2001). High-oil corn hybrids. In: Speciality corns. Hallauer A.R. (Ed.), 2nd edition. CRC Press, Boca Raton, FL., USA. pp. 131-154.
Laurie, C. C., Chasalow, S. D., Ledeaux, J. R., Mc Carrolla, R., Bush, D., Hange, B., Lai, C., Clark, D., Rocheford, T. R. and Dudly, J. W. (2004). The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics, 168: 2141-2155.
Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, G. J., Buckler, E. and Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci., 99: 6080- 6084.
Mikkilineni, V. and Rocheford, T. R. (2003). Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theorotical Applied Genetetics, 106: 1326-1332.
Najeeb, S., Rather, A. G., Zarger, M. A., Ahangar, M. A., Sheikh, F. A., Parray, G. A., Bhat, Z. A., Sofi, P. A., Kashap, S. C., Ishfaq, A., Dar, Z. A., Mehfoza, H. and Bardi, Z. A. (2012). Maize landraces of Kashmir: present status and future prospects. Maize Genetics Cooperation Newsletter, 86: 1-11.
Ortega, P., Martínez, A. and Sánchez, G. (2000). Recursos fitogenéticos autóctonos. In Recursos Fitogenéticos de México para la Alimentación y la Agricultura. Ramírez V., P., R.
Ozcan, S. (2009). Corn, indispensable crop of the modern world: Contribution of genetically modified (transgenic) corn on agricultural production. Turkish Journal of Scientific Reviews, 2(2): 1-34.
Pearson, D. (1976). The Chemical Analysis of Foods. 7th ed., Churchill Livingstone, Edinburgh.
Ranum, P., Pena-Rosas, J. P., Garcia-Casal, M. N. (2014). Global maize production, utilization and consumption. Annals of the New York Academy of Sciences, 1312: 105- 112.
Rajendran, R.A., Singh, N., Mahajan, V., Chaudhary, D. P., Sapna, S. and Kumar, R. S. (2012). Corn oil: an emerging industrial product. Directorate of maize research, New Delhi. Technical Bulletin, 8: 36.
Reynolds, T. L., Nemeth, M. A., Glenn, K. C., Ridley, W. P., Astwood, J. D. (2005). Natural variability of metabolites in maize grain: differences due to genetic background. Journal of Agricultural and Food Chemistry, 53: 10061-10067.
Sanjeev, P., Chaudhary, D. P., Sreevastava, P., Saha, S., Rajenderan, A., Sekhar, J. C., Chikkappa, G. K. (2014). Comparison of Fatty Acid Profile of Specialty Maize to Normal Maize. J Am Oil Chem Soc., DOI 10.1007/s11746-014-2429-y.
Scrob, S., Muste, S., Has, J., Muresan, C., Socaci, S. and F?rcas, A. (2014). The Biochemical Composition and Correlation Estimates for Grain Quality in Maize. Journal of Agroalimentary Processes and Technologies, 20(2): 150-155.
Vigouroux, Y., Glaubitz, J. C., Matsuoka, Y., Goodman, M. M., Sanchez, G. J. and Doebley, J. F. (2008). Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. American J Bot., 95: 1240-1253.
Watson, S. A. (2003). Description, development, structure and composition of the corn kernel, pp. 69-106. In: Corn: Chemistry and Technology. White, P. J. and Johnson, L. A. (Eds.), Am Assn Cereal Chemists Inc St. Paul, MN.
White, P. J. and Weber, E. J. (2003). Lipids of the kernel, pp. 355-405. In: Corn: Chemistry and Technol¬ogy. White, P. J. and Johnson, L. A. (Eds.) Am Assn Cereal Chemists Inc St. Paul, MN.
White, P. J., Pollak, L. M. and Duvick, S. (2007). Improving the fatty acid composition of corn oil by using germplasm introgression. Lipid Technology, 19(2): 35-38.
Section
Research Articles

How to Cite

Biochemical evaluation of dent corn (Zea mays L.) genotypes cultivated under rainfed conditions in the hills of north western Indian Himalayan state of Jammu and Kashmir. (2018). Journal of Applied and Natural Science, 10(1), 196-201. https://doi.org/10.31018/jans.v10i1.1604