##plugins.themes.bootstrap3.article.main##

Sanjeev Kumar Kataria Paramjit Singh Gulab Pandove Anu Kalia Ravinder Singh Chandi

Abstract

Whitefly has assumed the status of a serious pest of cotton in north India in recent past due to its severe attack on cotton crop. The productivity of cotton crop has fallen substantially from 574 kg ha-1 of lint in the year 2014 -15 to 197 kg ha-1 in the year 2015-16 in Punjab. During extensive epidemiological surveillance of whitefly on cotton crop in the month of September 2016, mummified whiteflies with fungus were noticed on both abaxial and adaxial surfaces of leaves of the infested cotton plant at village, Mandi Khurd, Mansa District of Punjab, India and at Punjab Agricultural University, Regional Research Station, Bathinda, India. The fungus was isolated and purified from the mummified white fly and characterized at molecular level by sequencing 633 bp D2 region of Large Subunit (LSU) rRNA gene and identified as Penicillium oxalicum spg1. The gene sequence has been submitted to NCBI, USA with accession no. KY214238. The microscopic studies (stereo- and scanning electron) of the cotton leaves with mummified whitefly further strengthen the entomopathogenic potential of P. oxalicum spg1. There are few reports of entomopathogenic potential of P. oxalicum spg1 against other insects and pests. To our knowledge, this is the first report of isolation and identification of P. oxalicum spg1 from mummified white fly. It’s potential as a biocontrol agent against white fly can be exploited in a promising way with nominal interference with biological equilibrium.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Molecular characterization, P. oxalicum spg1, Surveillance, Whitefly

References
Anonymous (2015). Times of India, dated October, 2015
Al-Ameri, D. T. (2011). Efficacy of the entomopathogenic fungus Beauveria bassiana and the commercial formulation of the fungus Lecanicillium muscarium (Mycotal) for the control of the cotton whitefly Bemisia tabaci, M. Sc. University of Baghdad- College of Agriculture.66 p.
Al-Keridis, L. A. (2015). Application of Penicillium sp as Entomopathogenic Fungi to Control the Red Rust Beetle Tribolium castaneum (Hbst.) (Coleoptera: Tenebrionidae). Biosci. Biotech. Res. Asia, 12: (spl.edn.2).
Aneja, A. K. (2000). Studies on the biology of cotton whitefly, Bemisia tabaci (Genn.) on American cotton Gossypium hirsutum (Linn.), M.Sc. Thesis, Punjab Agricultural University, Ludhiana, India.
David, V. (2012). The whitefly or mealywing bugs. Lambert Academic Publishing, Saarbrucken. Germany, 411
De-Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., Durand, A., Gerlagh, M., Jones, E. E., Lut,h P., Oostra, J., Ravenberg, W. J., Renaud, R., Rinzema, A., Weber, F. J. and Whipps, J. M. (2001). The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol.Biotechnol., 56:58-68.
Dubey, A.K. and Ko, C.C. (2008). Whitefly (Aleyrodidae) host plants list from India. Orient. Insects, 42: 49-102.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783-791.
Gindin, G., Barash, I., Raccah, B., Singer, S., Benzeev, I. and Klein. (1996). The potential of some entomopathogenic fungi as Biocontrol against onion thrips, Thrips tabaci and western flower thrips Frankliniella accidentalis. Folia Entomology, Lvll: 37-42.
Hussain, A., Tian, M., Ahmed, S. and Shahid, M. (2012). Current Status of Entomopathogenic Fungi as Mycoinecticides and Their Inexpensive Development in Liquid Cultures, from Zoology. Edited by Dr. María-Dolores García (Ed.), InTech, 103–122.
Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16:111-120.
Lacey, L. A., Fransen, J. J. and Carruthers, R. (1996). Global distribution of naturally occurring fungi of Bemisia, their biologies and use as biological control agents, In: Bemisia 1995: Taxonomy, Biology, Damage Control and Management, Gerling D, Mayer RT, eds. Intercept Ltd., Andover, U.K., pp. 401-433.
Larena, I., Melgarejo, P. and De Cal, A. (2003). Drying of conidia of Penicillium oxalicum, a biological control agent against Fusarium wilt of tomato. J.Phytopathol., 151:600-606.
Mazid, S., Rajkhowa, R. C. and Kalita, J. C. (2011). A review on the use of biopesticides in insect pest management. Int. J.Sci. Adv. Technol.,1:169-178.
Michereff, S. J., Silveira, N. S. S., Reis, A. and Mariano, L. R. (1995). Greenhouse screening of Trichoderma isolates for control of Curvularia leaf spot of yam. Mycopathologia, 130 :103-108.
Mishra, C. S. and Lamba, K. S. (1929). The cotton whitefly (Bemisia gossypiperda). Bulletin Agricultural Research, Pusa, 196:7.
Mohan, S., Monga, D., Kumar, R., Nagrare, V., Nandini G.-N., Vennila, Tanwar, R. K.,Sharma, O. P., Bhagat, S., Agarwal, M., Chattopadhyay, K.R., Birah, A., Amaresan, Singh, A., Sushil, S. N., Ram Asre, Kapoor, K. S., Jeyakumar, P. and Satyagopal, K. (2014). Integrated pest management Package for cotton.
Pandey, R. R., Arora D. K. and Dubey, R. C. (1993). Antagonistic interactions between fungal pathogens and phyllophane fungi of guava. Mycopathologia, 124:31-39.
Pareek, N., Ghosh, S., Singh, R. P. and Vivekanand, V. (2014). Enhanced production of chitin deacetylase by Penicillium oxalicum SAEM-51 through response surface optimization of fermentation conditions. Biotech, 4:33-39.
Sabuquillo, P.,De Cal A. and Melgarejo P. (2005). Dispersal improvement of a powder formulation of Penicillium oxalicum, a biocontrol agent of tomato wilt. Plant Dis., 89:1317-1323.
Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.,4:406-425.
Santamarina, M. P., Rosello, J., Llacer, R. and Sanchis, V. (2002). Antagonistic activity of Penicillium oxalicum Corrie and Thom, Penicillium decumbens Thom and Trichoderma harzianum Rifai isolates against fungi, bacteria and insects in vitro. Rev. Iberoam. Micol., 19:99-103.
Santamarina, S. M. P., Rosello, C. J., Barcelo, C. S. and Marin, S. S. (2003). Effect of water activity and temperature on competing abilities of Penicillium oxalicum against Fusarium oxysporum. Rev. Iberoam. Micol., 20:154-159.
Shahid, A. A., Rao, A., Bakhsh, A. and Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity. Arch. Biol Sci. Belgrade.64: 21-42.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol., 28:2731-2739.
Vestergaard, S., Butt, T. M., Bresciani, J., Gillespie, A. T. and Eilenberg, J. (1999). Light and electron microscopy studies of the infection of the western flower thrips Frankliniellaoccidentalis (thysanoptera:thripidae) by the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr.Pathol.73:25-33.
Section
Research Articles

How to Cite

Penicillum oxalicum spg1: A novel entomopathogenic fungus isolated from mummified Bemisia tabaci (Gennadius) of cotton. (2018). Journal of Applied and Natural Science, 10(1), 138-143. https://doi.org/10.31018/jans.v10i1.1593