

Screening of Brassica germplasm against *Albugo candida* (White rust disease) on Brassica species (Rapeseed-mustard)

K.S. Bisht*, A.K. Tewari and Pooja Upadhyay

Centre of Advance studies, Department of Plant Pathology, College of Agriculture, GBPUA&T, Pantnagar - 263 145, U.S. Nagar (Uttarakhand), INDIA

*Corresponding author. E-mail: ksbisht1972@gmail.com

Received: August 31, 2015; Revised received: January 21, 2016; Accepted: April 23, 2016

Abstract: White rust distributed worldwide, caused by *Albugo candida* (Pers. Ex. Lev.) Kuntze. (*A. Cruciferarum* S. F. Gray) is one of the major disease responsible in reducing the yield of rapeseed-mustard. Among various management approaches use of resistant varities is consider best, as it is cost effective and environment friendly. However, till now only few resistant sources against the disease has been reported. Therefore, in the present investigation 70 rapeseed-mustard germplasm have been evaluated in field under epiphytotic conditions during 2011-12 and 2012-13 crop seasons. All the germplasms showed similar disease reaction after screening in both the years. Among 70 germplasm, seven germpalsms i.e. DLDC-1, DRMR-100, DRMR-312, EC-339000, GSL-1, NPJ-158 and RH-0644 were found free from the disease with 0% disease severity. These germplasms could be used in breeding programmes for the development of resistant genotypes having high yield potential.

Keywords: Albugo candida, Pathogen, Resistance, Rapeseed-mustard, Screening

INTRODUCTION

White rust disease is a major disease of Brassica species (Rapeseed-mustard) appears in different proportions on rapeseed-mustard crops in several localities throughout the world. (Saharan and verma, 1992). The disease has been recorded from more than eight countries of the world with a host range of more than 300 hosts (Meena, *et al.*, 2014). White rust infection on plants resulted from two types 'local and systemic' (Verma and Petrie, 1980). In systemic infection disease appears as distortion, hypertrophy, hyperplasia and sterility of inflorescence. This phase of infection has been referred as the staghead (Maheshwari *et al.*, 1985; Kolte, 1985 and Awasthi *et al.*, 1995).

White rust disease cause intensive yield losses. In India a yield loss of 17-32 percent in B. juncea and B. rapa (Bains and Jhooty, 1979) 23-55 per cent (Saharan et al. 1984), 31.5-37.2 per cent (Sing et al. 1990), 20-60 per cent (Bisht et al., 1994) and 17-34 per cent (Gupta et al., 2004) has been reported. Kolte et al. (1986) reported vield loss of 17-32 per cent in B. juncea in India, due to mixed infection of A. candida and Hyaloperonospora brassicae. Presently the growers are mainly dependent on chemical fungicides for the partial management of the disease which is not ecofriendly. To overcome these problems the only alternative method is to search out resistant sources from the available Brassica germplasm for the development of high yielding resistant varieties against the disease. Keeping above in view the present investigation was carried out for screening the Brassica germplasm against white rust disease.

MATERIALS AND METHODS

The experiment was conducted at Norman E. Borlaug Crop Research Centre, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, during rabi crop season of year 2011-12 and 2012-2013 for screening of white rust disease of rapeseedmustard. Brassica germplasm supplied by DRMR, Sewar, Bharatpur, Rajasthan (Table 1). These germplasm of rapeseed mustard were used for determining their phenotypic disease reactions against white rust under artificially inoculated conditions for selection of resistant sources. Each entry was sown in two rows each of 3m length with two replications. Line to line distance was 30 cm, while plant to plant distance was 10-15 cm. PYS 6 was sown as a susceptible check after each entry. Each test entry and susceptible checks were artificially inoculated with white rust inoculum.

Methods of inoculation: Oosporic material i.e. staghead source of primary inoculum, collected from the previous year crop were grinded, mixed with the seeds before sowing and applied into the soil along with the seed at the time of sowing which served as source of primary inoculum in causing infection.

Fresh infected leaves contained white rust pustules which served as secondary source of inoculum were collected and made sporangial suspension in distilled water. Inoculum concentration was adjusted to 10^4

ISSN : 0974-9411 (Print), 2231-5209 (Online) All Rights Reserved © Applied and Natural Science Foundation www.jans.ansfoundation.org

I aDIC	1 able 1. Mapescen-illusiatu gerinpiasiti suppireu <i>UJ</i> DAMIN, Dewat, Ditatatpu (Najasutati).	germprant but	Upited by DINK	IIV, JUWAI	ı, Dılarayun (Naja	inally.						
N	Name of germ-	Brassica	Collection	NO	Name of	Brassica	Collection	N	Name of	Brassica	Collection	
0.1.	plasm	species	from	0.1.	germplasm	species	from	N. 0	germplasm	species	from	
1	DRMR-100	B. carinata	Bharatpur	26	RMT-08-2	B. rapa	Morena	51	PRE-2007-6	B. juncea	Pantnagar	
0	DRMR-312	B. carinata	Bharatpur	27	RMM-09-10	B. rapa	Morena	52	EC-414324	B. juncea	Pantnagar	,
ε	DRMR-11-10	B. juncea	Bharatpur	28	JMM-07-2	B. juncea	Morena	53	EC-339000	B. napus	Pantnagar	-
4	DRMR-11-11	B. juncea	Bharatpur	29	JMM-08-1	B. juncea	Morena	54	EC-414322	B. juncea	Pantnagar	
5	DRMRIJ-11-275	B. juncea	Bharatpur	30	JMM-07-1	B. juncea	Morena	55	PRKS-28	B. juncea	Pantnagar	
9	DRMRIJ-31	B. juncea	Bharatpur	31	JMT-08-13	B. rapa	Morena	56	SKM-815	B. juncea	SK Nagar	
٢	DRMR-261	B. juncea	Bharatpur	32	NPJ-164	B. juncea	New Delhi	57	SKM-B-817	B. juncea	SK Nagar	. , 0
8	DRMR-11-08	B. juncea	Bharatpur	33	NPJ-165	B. juncea	New Delhi	58	TKM-10-2	B. rapa	Kanpur	
6	DRMR-11-09	B. juncea	Bharatpur	34	NPJ-166	B. juncea	New Delhi	59	TK-17-14	B. rapa	Kanpur	· · · · ·
¢		£	Ā	i C		c				¢		
10	DRMR1J-11-287	B. juncea	Bharatpur	35	791-L4N	B. juncea	New Delhi	09	KOHINI	B. napus	Kanpur	
11	DRMRIJ-11-286	B. juncea	Bharatpur	36	NPJ-121	B. juncea	New Delhi	61	Varuna	B. juncea	Kanpur	~
12	NRCDR-705	B. juncea	Bharatpur	37	NPJ-127	B. juncea	New Delhi	62	RGN-282	B. juncea	Sriganganagar	
13	RH-0834	B. juncea	Hisar	38	NPJ-158	B. juncea	New Delhi	63	Divya-33	B. juncea	Sriganganagar	~ (-
14	RH-0904	B. juncea	Hisar	39	LES-42	B. juncea	New Delhi	64	NDRE-7	B. juncea	Faizabad	-,.
15	RH-0644	B. juncea	Hisar	40	LES-43	B. juncea	New Delhi	65	NDYR-32	B. rapa	Faizabad	
16	RH-0704	B. juncea	Hisar	41	LET-36	B. juncea	New Delhi	99	GSL-1	B. napus	Ludhiana	
17	RH-0735	B. juncea	Hisar	42	NPJ-140	B. juncea	New Delhi	67	CJ-37-61	B. juncea	Ludhiana	
18	RH-0749	B. juncea	Hisar	43	NPJ-151	B. juncea	New Delhi	68	PBR-378	B. juncea	Bhathinda	(-(
19	RAUDL-9-32	B. juncea	Dholi	44	NPJ-152	B. juncea	New Delhi	69	PBR-375	B. juncea	Bhathinda	0
20	RAURD-09-212	B. juncea	Dholi	45	NPJ-157	B. juncea	New Delhi	70	YSB-9	B. rapa	Bawal	,
21	RAURDL-02-01	B. juncea	Dholi	46	DLDC-1	B. carinata	New delhi					
22	RM-WR-09-5	B. juncea	Morena	47	PAB-2005-16	B. juncea	Pantnagar					
23	JYM-11	B. juncea	Morena	48	PAB-2004-4	B. juncea	Pantnagar					
24	JMWR-08-3	B. juncea	Morena	49	PT-303	B. rapa	Pantnagar					
25	RMT-08-06	B. rapa	Morena	50	EC-414299	B. rapa	Pantnagar					

Table 1. Rapeseed-mustard germplasm supplied by DRMR, Sewar, Bharatpur (Rajasthan).

K.S. Bisht et al. / J. Appl. & Nat. Sci. 8 (2): 658 - 662 (2016)

sporangia/ ml using haemocytometer. Prepared sporangial suspension of *A. candida* was sprayed directly to test plants at cotyledonary stage (2/3 leaf stage) and at initiation of flowering stage in the evening. Irrigation was done just after spraying and regular spraying of tab water as per requirement to maintain optimum RH and moisture for 3 days after inoculation. Crop after spraying was regularly watched for appearance of the disease. The observations on disease severity and disease reaction was recorded on the basis of all leaves on 10 plants selected randomly from each germplasm at maximum disease pressure i.e. at 75 DAS. using 0-9 rating scale (Table 2) as given in AICRP R&M (2010).

Table 2. Rating (0-9) scale for measuring disease severity and disease reaction (AICRP R&M, 2010).

Rating score	Leaf area covered (%)	Disease reaction
0	No symptoms	Immune
1	< 5	Highly resistant
3	6-10	Resistant
5	11-25	Moderately
		Resistant
7	26-50	Susceptible
9	< 50	Highly
		susceptible

RESULTS AND DISCUSSION

In the present investigation, out of seventy germplasm (70) seven germplasm i.e. DLDC-1, DRMR-100, DRMR-312, EC-339000, GSL-1, NPJ-158 and RH-0644 showed immune reaction i.e. free from the disease. EC-414299, PT-303, TK-17-14, YSB-9 and DRMRIJ-11-287 were moderately resistant with a disease severity of 11.11-16.67 per cent, RMM-09-10, RMT-08-06, RMT-08-2, TKM 10-2, Divya-33, DRMRIJ-11-286, JMM-07-1, DRMR-261, JMT-08-13, NPJ-121, NPJ-127, NRCDR-705 and PAB-2005-16 were susceptible with a disease severity 26-50 per cent while, DRMR-11-10, DRMR-11-11, DRMRIJ-11 -275, DRMRIJ-31, CJ-37-61, DRMR-11-08, DRMR-11-09, EC-414322, EC-414324, JMM 07-2, JMM-08-1, JMWR-08-3, LES-42, LES-43, LET-36, NDRE-7, NDYR-32, NPJ-140, NPJ-151, NPJ-152, NPJ-157, NPJ-164, NPJ-165, NPJ-166, NPJ-167, PAB-2004-4, PBR-375, PRE-2007-6, PRKS-28, RAUDL-9-32, RAURD-09-212, RAURDL-02-01, RGN-282, RH-0704, RH-0735, RH-0749, RH-0834, RH-0904, RM-WR-09-5, ROHINI, SKM-815, SKM-B-817 and Varuna were found highly susceptible with more than 50 per cent against white rust (Table 3). Yadav et al. (1999). evaluated 74 Indian mustard (Brassica juncea) germplasm lines for resistance against white rust diseases. None of the genotype was found resistant Li et al. (2007). Screened 44 B. juncea genotypes, viz. 22 from India, 12 from Australia, and 10 from China, Out of 40 genotypes, 04 Chinese genotypes (CBJ-001, CBJ-002, CBJ-003, CBJ-004) and 01 Australian genotype (JR049) consistently showed high resistance to A. candida. Li et al. (2008). who screened 44 B. juncea genotypes among them CBJ-001, CBJ-003 and CBJ-004 showed highly resistance against A. candida. Meena et al. (2011) reported PBC 9221, and EC 414299 brassica lines as resistant to white rust. DRMR (2011) reported EC414291, EC 414293, MCB1, DRMR 243, DRMR 261, DRMR 270, NRCDR 705, JMWR 945-2-2-75 Kr, EC 399313, JYM 11 and NDWR 5-1 as resistant lines to white rust. In earlier studies different workers evaluated different Brassica germplasms and reported few germplasms as a resistant source. However, in the present investigation Brassica lines tasted were different from earliar workers. In the present studies few lines were found free from the disease, however some lines were found moderately resistant.

Conclusion

In this study, seventy germplasms of *B. carinata*, *B. napus*, *B. juncea*, and *B. rapa* were screened out against white rust disease. Among these DLDC-1, DRMR-100 & DRMR-312 (*B.carinata*); EC-339000 & GSL-1 (*B. napus*); NPJ-158 & RH-0644 (*B. juncea*) were free from the disease with 0% disease severity. The NPJ-158 and RH-0644 (*B.juncea*) lines could be best exploited as a source of resistance in breeding programme for the development of high yielding varities against white rust disease.

REFERENCES

- AICRP R&M. (2010). Annual progress report. All India Coordinated Research Project on Rapeseed-Mustard., Bharatpur. India.
- Awasthi, R.P. Nashaat, N.I. and Kolte. S.J. (1995). Interaction between *Peronospora parasitica* and *Albugo candida* in relation to staghead formation in *B. juncea*. *In*; National symposium on "Detection of plant pathogens and their management". IPS. 18-20 Jan., Faizabad, UP, India 36 p
- Bains, S.S. and Jhooty, J.S. (1979). Mixed infection of Albugo candida and Peronospora parasitica on Brassica juncea inflorescence and their control. Indian Phytopathology, 32: 268 – 271.
- Bisht, I.S., Agrawal, R.C. and Singh, R. (1994). White rust (*Albugo candida*) severity in mustard (*B. juncea*) varieties and its effects on seed yield. *Pant Variety and Seed*, 7: 85-89.
- DRMR. (2011). Annual progress report. All India Coordinated Research Project on Rapeseed-Mustard., Bharatpur. India.
- Gupta, K., Prem, D. and Agnihotri, A. (2004). Role of biotechnology for incorporating white rust resistance in Brassica species. *Plant Biotechnology and Molecular Markers*. Anamaya Publisher, New Delhi, India
- Kolte, S.J., Awasthi, R.P. and Vishwanath (1985). Field performance of improved toria (*Brassica campestris* var. toria) varities against Alternaria blight, downy mildew and white rust diseases. *Indian Journal of Mycology and Plant Patholology*, 15(2): 211-213.
- Kolte, S.J., Awasthi, R.P. and Vishwanath (1986). Effect of planting dates and associated weather factors on stag-

661

K.S. Bisht et al. / J. Appl. & Nat. Sci. 8 (2): 658 - 662 (2016)

Rating scale (0-9)		a -		white rust on the basis of	
Per-cent intensity	Reaction	Germplasm	No. of Germplasm	%Disease severity	Disease* reaction
			DLDC-1	0.00	Immune
			DRMR-100 DRMR-312	0.00 0.00	Immune
0%	Immune	07	EC-339000	0.00	Immune
070	minune	07	GSL-1	0.00	Immune Immune
			NPJ-158	0.00	Immune
			RH-0644	0.00	Immune
>5%	Highly resistant	00	Nil	-	-
5-10%	Resistant	00	Nil	-	-
			EC-414299	16.67	Moderately resistant
	Moderately		PT-303	16.67	Moderately resistant
11-25%	Resistant	05	TK-17-14	16.67	Moderately resistant
			YSB-9	16.67	Moderately resistant
			DRMRIJ-11-287 RMM-09-10	11.11 50.00	Moderately resistant Susceptible
			RMT-08-06	38.89	Susceptible
			RMT-08-2	38.89	Susceptible
			TKM-10-2	47.22	Susceptible
			Divya-33	47.22	Susceptible
			DRMRIJ-11-286	50.00	Susceptible
26-50%	Susceptible	14	JMM-07-1	50.00	Susceptible
20-3070	Susceptible	14	DRMR-261	44.44	Susceptible
			JMT-08-13	36.11	Susceptible
			NPJ-121	50.00	Susceptible
			NPJ-127 NRCDR-705	50.00 47.22	Susceptible Susceptible
			PAB-2005-16	44.44	Susceptible
			PBR-378	44.44	Susceptible
			DRMR-11-10	66.66	Highly susceptible
			DRMR-11-11	72.22	Highly susceptible
			DRMRIJ-11-275	77.77	Highly susceptible
			DRMRIJ-31	77.77	Highly susceptible
			CJ-37-61	61.11	Highly susceptible
			DRMR-11-08	72.22	Highly susceptible
			DRMR-11-09	58.33	Highly susceptible
			EC-414322 EC-414324	61.11 61.11	Highly susceptible Highly susceptible
			JMM-07-2	61.11	Highly susceptible
			JMM-08-1	77.77	Highly susceptible
			JMWR-08-3	55.55	Highly susceptible
			JYM-11	66.66	Highly susceptible
			LES-42	58.33	Highly susceptible
			LES-43	58.33	Highly susceptible
			LET-36	69.44	Highly susceptible
			NDRE-7	58.33	Highly susceptible
			NDYR-32	72.22 74.99	Highly susceptible
			NPJ-140 NPJ-151	74.99	Highly susceptible Highly susceptible
			NPJ-152	80.55	Highly susceptible
	Highly		NPJ-157	69.44	Highly susceptible
<50%	Susceptible	44	NPJ-164	77.77	Highly susceptible
			NPJ-165	77.77	Highly susceptible
			NPJ-166	72.22	Highly susceptible
			NPJ-167	74.99	Highly susceptible
			PAB-2004-4	61.11	Highly susceptible
			PBR-375 PRE-2007-6	58.33 66.66	Highly susceptible Highly susceptible
			PRKS-28	72.22	Highly susceptible
			RAUDL-9-32	61.11	Highly susceptible
			RAURD-09-212	77.77	Highly susceptible
			RAURDL-02-01	69.44	Highly susceptible
			RGN-282	66.66	Highly susceptible
			RH-0704	63.88	Highly susceptible
			RH-0735	77.77	Highly susceptible
			RH-0749	55.55	Highly susceptible
			RH-0834	61.11	Highly susceptible
			RH-0904	77.77	Highly susceptible
			RM-WR-09-5 ROHINI	66.66 61.11	Highly susceptible Highly susceptible
			SKM-815	55.55	Highly susceptible
			SKM-815 SKM-B-817	55.55	Highly susceptible

 Table 1. Screening of Brassica germplasm for white rust disease resistance.

head phase of white rust and downy mildew of rapeseed and mustard. *Indian Journal of Mycology and Plant Patholology*, 10 (2): 94-102.

- Li, C.X., Sivasithamparam, K., Walton, G., Fels, P., Barbetti, M.J. (2008). Both incidence and severity of white rust disease reflect host resistance in *Brassica juncea* germplasm from Australia, China and India, *Field Crops Res*, 106(1): 1-8.
- Li, C.X., Sivasithamparam, K., Walton, G., Salisbury P., Burton, W., Banga, Surinder, Banga, S.S., Shashi, Chattopadhyay, C., Kumar, A., Singh, R., Singh, D., Agnohotri, A., Liu, S.Y., Li Y.C., Fu T. D., Wang, Y.F. and Barbetti, M.J. (2007). Expression and relationships of resistance to white rust (*Albugo candida*) at cotyledonary, seedling, and flowering stages in *Brassica juncea* germplasm from Australia, China, and India: *Australian Journal of Agricultural Research*, 58(3): 259–264.
- Maheshwari, D.K., Chaturvedi, S.N. and Yadav, B.S. (1985). Structure and development of galls induced by *Albugo* in inflorescence axis of *Brassica juncea*. *Indian Phytopathology*, 38: 546-548.
- Meena, P.D., Awasthi, R.P., Godika, S., Gupta, J.C., Kumar, A., Sandhu, P.S., Sharma, P., Rai, P.K., Singh, Y.P., Rathi, A.S., Prasad, R., Rai, D. and Kolte, S.J. (2011). Eco-friendly approaches managing major diseases of

Indian mustard. *World Applied Science. Journal*, 12 (8):1192-1195.

- Meena, P.D., Verma, P.R., Saharan, G.S. and Borhan, M.H. (2014). Historical perspectives of white rust caused by Albugo candida in Oilseed Brassica. *Journal of Oilseed Brassica*, 5: 1-41.
- Saharan, G.S., Kaushik, C.D., Gupta, P.P. and Tripathi, N.N. (1984). Assessment of losses and control of white rust of mustard. *Indian Phytopathology*, 37: 397.
- Saharan, G.S. and Verma, P.R. (1992). White rust: A review of economically important species. International Development Research Centre, Ottawa. Ontario, Canada, IDRC-MR315e, IV+65p.
- Singh, B.M., Sharma, B.M. and Kapoor, A.S. (1990). Costus a new host record for white rust and downy mildew from India. *Indian Phytopathology*, 43(2): 237-238.
- Verma, P.R. and Petrie, G.A. (1980). Effect of seed infestation and flower bud inoculation on systemic infection of turnip rape by *Albugo candida*. *Can Journal of Plant Science*. 60: 267-271
- Yadav, M.S., Dhillon, S.S., Kaur, S., Brar, K.S. and Singh, K. (1999). Screening of Indian mustard germplasm for resistance to Alternaria blight and white rust. *Plant Disease Research*, 14(1): 70-72.