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Abstract: The present investigation was undertaken to observe the effect of different combinations of almunium and 
iron (Al-Al, Al-Fe, Fe-Fe and Fe-Al)  electrodes on the removal of colour, turbidity (TD) and total suspended solids 
(TSS) of biologically treated municipal wastewater ( BTMW) using applied potential (V), operating time (OT) and 
initial pH.  The maximum removal of colour (98.7 %) and TSS (96.89 %) was found with the use of Al-Al combination 
with optimum operating conditions (Voltage: 40 V; OT: 40 mins.; IED: 1.0 cm; EA: 160 cm2; initial pH: 7.5 and ST: 30 
mins). It was interesting to note that TD of BTMW was completely removed at these optimal operating conditions. 
The economic evaluation of electrode combinations was observed to be in the order of Fe-Al (1.17 US $/m3)> Al-Fe 
(1.11 US $/m3)> Fe-Fe (1.08 US $/m3) >Al-Al (1.01 US $/m3) in terms of energy and electrode consumption. Thus, 
the BTMW can be effectively treated with the Al-Al electrode combination in comparison to other electrode combina-
tions (Al-Fe , Fe-Fe and Fe-Al). 

Keywords: Aluminium and iron electrodes, Economic evaluation, Turbidity, Total suspended solids, Voltage  

INTRODUCTION 

The increase in water demand due to the continuous 

growth of human population has aroused a strong in-

terest in wastewater recycling which may be reused as 

a substitute for agricultural irrigation, industrial appli-

cations, ground water recharge, contributing to water 

conservation, municipal water supply and offering 

good economic benefits (Marchioretto and Reali, 

2001). Water reclamation, recycling, and reuse address 

these challenges by resolving water resource issue to a 

certain extent by increased public acceptance and im-

proved understanding on public health risks (Tyagi et 

al., 2011). 

The development of new or improved industrial proc-

esses that have no or little effect on the nature and 

processes for the treatment of inevitable wastes. The 

tendency of the cost of water to increase and the higher 

cost of effluent treatment due to the new restrictions on 

its discharge to the environment have induced indus-

tries to adopt the  programmes aiming at the minimiza-

tion of water consumption and favoring the develop-

ment of new methodologies for the optimization of 

these resources (Souza et al., 2006). The electrolytic 

process involves the generation of coagulants in situ by 

electrolytic oxidation of the sacrificial electrode mate-

rial. Aluminum or iron is usually used as electrodes 

and their cations are generated by the dissolution of 

sacrificial anodes upon the application of direct cur-

rent. The solubility of the metal hydroxide complexes 
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formed depends on pH and ionic strength. Insoluble 

flocs are generated in a pH range between 6.0 and 7.0 

as seen from the solubility diagrams of aluminum hy-

droxide at various pH values (Bensadok et al., 2008). 

Grey wastewater has been recognized as one of the 

wastewater which includes water from baths, showers, 

hand basins, washing machines, dishwashers, kitchen 

sinks and constitutes 50–80% of the total household 

wastewater but excluding water from the toilet. The 

discharges of untreated grey wastewater in the ecosys-

tem have substantial impacts on the environment and 

human health. However, at small scale the heavily 

polluted sources such as washing machines, dishwash-

ers and kitchen sinks tend to be excluded, whereas at 

larger scale all sources are used to maximize water 

savings (Eriksson et al., 2003 and Pidou et al., 2008).  

Now a days,  Electrolytic wastewater treatment is the 

need of the hour due to its high effectiveness, its lower 

maintenance cost, less need for labor , versatility, en-

ergy efficiency, safety, selectivity and amenability to 

automation and cost effectiveness. In this process, the 

sacrificial metal anode and cathode produce electri-

cally active coagulants along with tiny bubbles of hy-

drogen and oxygen in water (Chopra et al., 2011). The 

iron (Fe) and aluminum (Al) electrodes are consumed 

and the coagulant is generated and precipitated. There 

is no requirement of liquid chemical. The pH adjust-

ment is not needed because electro coagulation (EC) 

systems typically use metal Fe or Al anodes rather than 

corrosive Fe or Al salt solution (Kobya et al., 2011). 
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The electrolytic process can be a candidate for the 

small-scale wastewater treatment because it is charac-

terized by effective removal of pollutants by strong 

oxidation, easy operation by a lay person with simple 

education, no limitation by  seasonal variation, vari-

able capability to variable influent flux and quality, 

rapid treatment, and mobile installation (Hong et al., 

2013).  The efficiency of EC is influenced by wastewa-

ter type, pH, current density, type of metal electrodes 

used (aluminum, steel, iron), number of electrodes, 

size of elec­trodes, and configuration of metals 

(Hossain et al., 2013).   

The present study was undertaken to study the effi-

ciency of aluminum (Al) and iron (Fe) electrode com-

binations in removing colour, turbidity (TD) and total 

suspended solids (TSS) from biologically treated mu-

nicipal wastewater (BTMW) at different operating 

conditions such as applied potential, operating time, 

electrode area and pH. 

MATERIALS AND METHODS 

Collection of wastewater samples: The samples of 

BTMW were collected from the outlet of activated 

sludge process (ASP) of the sewage treatment plant 

(STP), Jagjeetpur, Haridwar (Uttarakhand), India and 

brought to the laboratory and then used for electro-

chemical treatment (ET) using different combinations 

of Al and Fe electrodes. The pH of BTMW was adjusted 

before the ET process and was maintained by adding the 

required amount of H2SO4 (1 M) or NaOH (1 M). 

Electrolytic experimental set up: A rectangular Reactor 

with external dimensions of height - 30 cm, width - 7 cm, 

length - 11 cm and wall thickness - 10 mm constructed 

with glass with a capacity of 2.0 liters sample was used  

for the treatment of  BTMW. Different electrode  

combinations (Al-Al, Al-Fe, Fe-Fe and Fe-Al) were 

connected to their respective anode and cathode lead-

ing to the D.C. power supply (LMC electronics, India 

0 -500 V and 0- 2 A). The different voltages (5 to 40 

volts) were passed for different operating times (10 – 

80 min). After ET process, the treated sample was 

taken for the 30 mins settling time All the experiments 

were performed at room temperature (30±2º C) and at 

a constant stirring speed (100 rpm) to maintain the 

uniform mixing of BTMW during the ET.  Before con-

ducting an experiment, the electrodes were washed 

with water, dipped into diluted HCl (5% v/v) for 5 

mins, thoroughly washed with water and then finally 

rinsed twice with distilled water as stated earlier 

(Chopra and Sharma., 2012). 

Analytical methods: The colour, TD and TSS of BTMW 

were analyzed before and after the ET following the stan-

dard methods for examination of water and wastewater 

APHA, 2005. The calculation of colour, TD and TSS of 

removal efficiencies were carried out using the formula as 

described earlier (Chopra and Sharma, 2013). 

RESULTS AND DISCUSSION 

The characteristics of BTMW before electrochemical 

treatment are shown in Table 1. The colour, TD and 

TSS removal from BTMW using different electrode 

combinations (Al-Al, Al-Fe, Fe-Fe and Fe-Al ) in ET 

process at different operating conditions such as  ap-

plied potential (V), operating time (OT), and electrode 

area (EA) and initial pH are indicated in Figs. 1- 4. 

Effect of applied potential (V): As illustrated in Figs. 

1, the experiments on different voltages in the range of 

5–40 V using different combinations of Al and Fe 

electrodes (Al-Al, Al-Fe, Fe-Fe and Fe-Al) showed the 

increase in removal efficiency of colour, TD and TSS 

progressively with an increase in the voltages from 5 
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Parameters 
BTMW 

(Mean±SD) 

Temperature (º C) 25.55±6.67 

pH 7.4±0.52 

Colour (PCU) 87.94±24.86 

Turbidity (NTU) 18.7±9.7 

EC (µ siemen/cm) 735±58.08 

TSS (mg/l) 115.2±35.96 

Table 1. Characteristics of BTMW. 

Fig 1. Removal efficiency of  (A) colour, (B) TD and (C) TSS  

using Al-Al, Al–Fe, Fe-Fe and Fe–Al electrode combinations 

with different voltages at constant operating conditions (OT: 

30 mins., EA: 80 cm2, pH: 7.5, ST:30 min.). 

A 

B 

C 
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to 40 V corresponding to the different current densities 

for different electrode combinations.  With Al-Al com-

bination, the maximum removal of colour (82.54 %) 

TD (95.15 %) and TSS (76.76 %) was observed using 

the CD 1.67 A/m2 ,while with the use of Fe-Al, there 

was  least removal of colour (68.7%), TD  (87.6%) and 

TSS (69.7%) using the CD 1.81 A/m2  and with the 

operating conditions of OT (30 mins),  inter electrode 

distance (IED) (1.0 cm),  EA (80 cm2), pH (7.5) and 

settling time (ST) (30 min.) (Fig.1). Thus,  Al-Al elec-

trode combination was the most efficient in compari-

son to Al-Fe, Fe-Fe and Fe–Al electrode combinations 

in terms of removal efficiency of colour, TD and TSS. 

The difference in removal efficiency of the electrodes 

for these parameters can probably be attributed to the 

different types of coagulants generated from their  

respective electrode combinations.  

The voltage to the EC system determines the amount 

of Al3+ion released from the respective electrodes and 

the quantity of resulting coagulants. Thus, more Al3+ 

ions get dissolved into the solution and the formation 

rate of Al(OH)3 is increased. Also, it is well known 

that electrical potential not only determines the  

coagulant dosage rate but also the bubble production 

rate, size and the flocs growth, which can influence the 

treatment efficiency of the EC. At higher currents, the 

supply of metal ions is generated rapidly as compared 

to the coagulation process, resulting in a decrease of 

removal efficiency calculated on an equivalent Al or 

Fe basis ( Letterman et al., 1999 and Holt et al., 2002). 

The rate of bubble-generation increases and the bubble 

size decreases with an increase in CD. Both of these 

trends are beneficial in terms of high pollutant removal 

efficiency by H2 floatation (Song et al., 2008). Cho et 

al. (2010) observed that the colour removal of swine 

wastewater was very low (1%) at 3V. Further, with an 

increase in the electric voltage, the colour removal was 

considerably enhanced, being approximately 67% and 

92% at 5 and 7V respectively. According to Chopra 

and Sharma (2015), the  cell voltage increases 

 gradually with the increase in current density as can 

be expected from the rate of anodic oxidation resulting 

in a greater amount of coagulant being formed during 

the electrolytic treatment that increases the removal of 

pollutants from wastewater. There was a slight in-

crease in the temperature with the increase in current 

density because of poor conductivity of the solution.  

Effect of operating time (OT): OT also influences the 

treatment efficiency of the ET.  In the present study, the 

removal of colour, TD and TSS was increased progres-

sively with an increase in the OT from 5 to 40 mins as 

indicated in the Fig. 2. It was found that the removal 

efficiency of colour, TD and TSS increased rapidly in 

the first 20 mins of the ET. For Al-Al, the maximum 

removal of colour (86.4 %) TD (98.20 %) and TSS 

(86.4 %) was observed, while with the use of Fe-Al, 

there was  less removal of colour (74.5 %) TD (89.7 %) 

and TSS (74.5 %) at  40 mins of OT, beyond which 

there was no significant removal with the operating  

conditions of voltage: V 40, IED 1.0 cm, EA 80 cm2, 

pH 7.5 and ST 30 min. This may be due to the fact that 

the dissolved metal ions and their hydroxides in the 

BTMW achieved the saturation stage for  floc forma-

tion. Tir and  Mostefa (2008) observed that  energy 

and electrode consumption increase with  increase in 

reaction time thereby showing that reaction time is a 

very important parameter affecting the cost effective-

ness of EC process in polluted waters. Bukhari (2008) 

stated that 0.05 A and 0.1 A of current applied for 5 

mins of electrolytic time resulted in 40–50% and 50 –

60% of suspended solids removal efficiency respec-

tively and that the removal efficiency was obtained in 

proportion to the amount of dissolved materials against 

each of the working times ranging between 10 and 50 

mins. It was also observed by Sharma and Chopra 

(2013) that the anodic electrode dissolution leads to the 

release of Al and Fe ions  and OH- from the cathode 

leading to the formation of hydroxides of the Al and Fe  

and related oxidized products into the BTMW. 

Effect of electrode area (EA): The greater electrode 

area increased the rate of flock’s formation that re-

sulted in an increase in the removal percentage of 

color, TD and TSS of BTMW. With an increase in EA 

from 80 to 160 cm2, the maximum removal of colour  

(98.7 %) and TSS (96.89 %) was observed at 160 cm2  
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Fig 2. Removal efficiency of  (A) colour, (B) TD and (C) TSS  

using Al-Al, Al–Fe, Fe-Fe and Fe–Al electrode combination 

with different operating time (OT)at constant operating con-

ditions (Voltage: 40 V., EA: 80 cm2, pH: 7.5, ST: 30 min.). 

A 

B 

C 
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EA with the use of  Al-Al, while with the use of Fe-Al, 

there was  least removal   of colour (85.69 %) TD 

(97.68 %) and TSS (87.6 %) at  160 cm2  EA. The 

complete removal of TD was found at the 160 cm2 for 

Al-Al. The color of BTMW was decreased gradually 

with an increase of the electrode area of Fe-Fe (Fig 3). 

The increase in EA results in an increase in the bubble 

generation which in turn increases the removal effi-

ciency of these parameters in BTMW by  coagulation 

and floatation. The removal efficiency can be attrib-

uted to a more EA that produced larger amount of ani-

ons and cations from the anode and cathode surface. 

 Daneshava et al., (2005) reported that an increase of 

electrode area causes a corresponding increase of co-

agulants. The entire effectiveness of the coagulation 

process depends on the appropriate amount of coagu-

lant. Escobara et al. (2006) have also observed logisti-

cal relationship between electrode geometric area (AG) 

and copper removal efficiency; and accomplished that 

an increase in copper removal was related to an in-

crease in AG, reaching an optimal value of 35 cm2, 

with an asymptotic value of near 80 %. Chopra and 

Sharma (2013) observed that with a fourfold increase 

in the electrode area of Al–Fe i.e. from 40 to 160 cm2, 

the current increased from 0.24 to 0.58 A, which re-

sulted in an increase in the removal percentage of TD, 

COD and BOD from secondarily treated sewage.  

Effect of pH: The efficiency of electrode combina-

tions for the removal of colour, TD and TSS  at differ-

ent pH values of 5 to 8.5 of BTMW with the operating 

conditions of voltage: V 40, IED 1.0 cm, EA 160 cm2 

and ST 30 min. is shown in Fig. 4. For Al-Al, the 

maximum removal of colour (98.7%), TD (100%) and 

TSS (96.89%) was found at the pH value of 7.5, 

whereas the use of Fe-Al, there was  least removal  of 

colour (85.69 %), TD (97.68%) and TSS (87.6 %) at 

the pH of 7.5 with the constant operating conditions. 

After that, the removal efficiency of these parameters 

decreased gradually with the increase in pH of more 

than 7.5 at constant operating conditions. 

The pH of electrolyte medium is an important contrib-

uting parameter that can influence the electrolytic 

process. Bayramoglu (2004) indicated that the EC 

process exhibits some buffering capacity, especially in 

alkaline medium, which prevents large changes in pH 

and shows a decrease of the pollutant removal effi-

ciency.  Essadki et al. (2008) observed that the differ-

ence between maximum pH for COD and turbidity can 

be attributed to the formation of more stable flocs 

when pH is about 7, although it does not correspond to 

the optimum for dye removal. This behavior was at-

tributed to the amphoteric character of aluminum hy-

droxide which does not precipitate at very low pH 

(Adhoum and Monser, 2004). The defluoridation by 

electrodes is a major contributor to overall removal 

efficiency in an EC system. Higher removal efficiency 

of electrodes was corresponding to the influent pH 

range of 6.0–7.0, but the efficiency would decrease as 

the influent becoming acidic or basic. However, the 

removal efficiency of electrodes would become domi-

nant even under basic conditions (pH ≥ 7.5) (Zhu et 

al., 2007). Therefore, further increase of the influent 

pH would decrease the phenol, color and COD re-

moval efficiency of paper mill wastewater (Katal and 

Fig 3. Removal efficiency of color, TD and TSS using Al-Al, 

Al–Fe, Fe-Fe and Fe–Al electrode combination with differ-

ent electrode area (EA) at constant operating conditions. 

(Voltage: 40 V, OT: 40 mins, pH: 7.5, ST: 30 min.). 

Fig 4. Removal efficiency (A) colour, (B) TD and (C) TSS  

using Al-Al, Al–Fe, Fe-Fe and Fe–Al electrode combinations 

with different initial pH at constant operating conditions. 

(Voltage: 40 V, OT: 40 mins; EA: 160 cm2, ST: 30 min.). 

A 

B 

C 
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Pahlavanzadeh, 2011). 

 Kinetic evaluation: The kinetic study for the rate of 

removal of colour, TD and TSS were calculated by 

following the first-order mechanism (El-Ashtoukhy 

ESZ, Amin 2010).   The increase in the voltages from 

5 to 40 V increased the rate constant from 0.0020 to 

0.0217 min-1 for Colour , 0.0048 to 0.0436 min-1 for 

TD  and   0.0016 to 0.0219 min-1 for TSS using Al-Al,  

Al-Fe,  Fe-Fe  and  Fe-Al  electrode combinations. The 

increase in the rate constant may be ascribed to the 

decrease of colour, TD and  TSS of the BTMW using 

Al-Al, Al-Fe, Fe-Fe and Fe-Al combinations. The 

pseudo first order kinetic exhibited with the significant 

correlation coefficients (>.90) at maximum voltage of 

40 V (Table 2).  

Economic evaluation: Economic evaluation is  one of 

the most important constraints of the ET because it 

affects the application of any wastewater treatment 

process. In ET process, the operating cost includes 

material mainly electrodes and electrical energy cost as 

well as labour, maintenance, sludge dewatering and its 

disposal. The operating cost (US $/m3) was calculated 

in terms of energy and electrode material cost (Ghosh 

et al., 2008). In the present study, for all the electrode 

Table 2. Rate constant (k (min-1) values at variable voltages and their correlation coefficients (r2) using Al-Al, Al–Fe, Fe-Fe and 

Fe–Al electrode combination. 

Table 3. Economic evaluation of Al-Al, Al–Fe, Fe-Fe  and Fe–Al electrode combination with different electrode areas at opti-

Electrode combinations EA 

(cm2) 

CD 

 (A/m2) 

Celectrode 

 x 10-5(kg/m3) 

Cenergy 

 (kWh/m3) 

Total OC (US$./

m
3) 

Al-Al 

80 1.68 14.99 64.32 0.64 

120 2.09 18.68 80.16 0.80 

160 2.65 23.71 101.76 1.01 

Al-Fe 

80 1.7 15.21 65.28 0.65 

120 2.14 19.12 82.08 0.82 

160 2.9 25.95 111.36 1.11 

Fe-Fe 

80 1.8 50 69.12 0.69 

120 2.22 61.81 85.44 0.85 

160 2.82 78.48 108.48 1.08 

Fe-Al 

80 1.81 50.35 69.6 0.69 

120 2.29 63.54 87.84 0.87 

160 3.06 85.07 117.6 1.17 

   Al-Al electrode combination 
5 10 15 20 25 30 35 40 

Color K (min-1) 0.0045 0.0083 0.0120 0.0135 0.0157 0.0174 0.0203 0.0217 
R2 0.9860 0.9952 0.9959 0.9899 0.9832 0.9785 0.9849 0.9848 

TD K (min-1) 0.0064 0.0116 0.0123 0.0159 0.0224 0.0296 0.0403 0.0436 
R2 0.9762 0.9905 0.9907 0.9911 0.9916 0.9829 0.9848 0.9949 

TSS K (min-1) 0.0018 0.0053 0.0080 0.0094 0.0103 0.0130 0.0148 0.0217 
R2 0.9057 0.9933 0.9903 0.9850 0.9770 0.9919 0.9898 0.9981 

                                       Al-Fe electrode combination  
Color K (min-1) 0.0039 0.0085 0.0103 0.0123 0.0135 0.0153 0.0182 0.0202 
  R2 0.9808 0.9812 0.9883 0.9827 0.9722 0.9664 0.9698 0.9755 
TD K (min-1) 0.0061 0.0099 0.0123 0.0157 0.0193 0.0248 0.0296 0.0370 
  R2 0.9973 0.9913 0.9867 0.9917 0.9889 0.9913 0.9853 0.9967 
TSS K (min-1) 0.0039 0.0085 0.0103 0.0123 0.0135 0.0153 0.0182 0.0201 
  R2 0.9525 0.9597 0.9877 0.9641 0.9628 0.9665 0.9658 0.9697 
                                       Fe-Fe  electrode combination  
Color K (min-1) 0.0020 0.0032 0.0044 0.0058 0.0075 0.0091 0.0103 0.0148 
  R2 0.9676 0.9425 0.9274 0.9374 0.9164 0.9312 0.9360 0.9829 
TD K (min-1) 0.0048 0.0085 0.0103 0.0123 0.0135 0.0153 0.0182 0.0252 
  R2 0.9625 0.9858 0.9742 0.9688 0.9437 0.9425 0.9479 0.9880 
TSS K (min-1) 0.0016 0.0053 0.0080 0.0094 0.0103 0.0130 0.0148 0.0219 
  R2 0.9058 0.9933 0.9903 0.9850 0.9770 0.9919 0.9898 0.9981 
                                        Fe-Al electrode combination  
Color K (min-1) 0.0039 0.0085 0.0103 0.0123 0.0135 0.0153 0.0182 0.0202 
  R2 0.9089 0.8806 0.9280 0.9231 0.9498 0.9414 0.9351 0.9499 
TD K (min-1) 0.0049 0.0066 0.0117 0.0130 0.0157 0.0172 0.0203 0.0247 
  R2 0.9818 0.9958 0.9962 0.9922 0.9947 0.9896 0.9862 0.9797 
TSS K (min-1) 0.0024 0.0038 0.0056 0.0068 0.0076 0.0099 0.0124 0.0148 
  R2 0.9536 0.9502 0.9683 0.9687 0. 9242 0.9561 0.9759 0.9826 
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combinations (Al-Al, Al-Fe, Fe-Fe and Fe-Al), the 

energy consumption increased from 64.32 kwh/m3 to 

117.6 kWh/m3 with an increase in   CD (1.68 to 3.06 

A/m2) that resulted in the increase of  electrode con-

sumption from 14.99 x 10-5  to 85.07 x10-5 kg/m3 for 

the removal of colour, TD and  TSS from BTMW dur-

ing ET . The operating cost due to electrical energy 

consumption as well as an electrode assembly for ET 

of  BTMW of Al-Al (1.01 US $/m3) was found to be 

lower than  Fe-Fe (1.08 US $/m3),  Al-Fe (1.11 US $/

m3), and  Fe-Al (1.17 US $/m3) (Table 3). 

Conclusion  

The use of all the combinations of electrodes (Al-Al, 

Al-Fe, Fe-Fe and Fe-Al) for the removal of color, TD 

and TSS of BTMW by ET were found to be dependent 

on the voltage, OT and initial pH. Among the different 

electrode combinations, Al-Al combination was found 

to be most effective in removing colour,TD and TSS 

removal. It was motivating to note that there was no 

need for pH adjustment for the treatment of BTMW. 

The kinetic rate constants for colour, TD and TSS  

removal at various voltages indicated that pseudo first-

order kinetic was in good agreement with the  

significant correlation coefficients (>.90) of the experi-

mental results. The operating cost for the ET of BTMW 

was found to be in the order of  Fe-Al (1.17 US $/m3)> Al

-Fe (1.11 US $/m3)> Fe-Fe (1.08 US $/m3) >Al-Al (1.01 

US $/m3) in terms of energy and electrode consumption. 

Thus, ET with Al–Al electrode combination should be 

ideal for the removal of colour, TD and TSS from 

BTMW in comparison to Al-Fe, Fe-Fe and Fe–Al elec-

trode combinations. 
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