

Journal of Applied and Natural Science

17(3), 1169 - 1179 (2025)

ISSN: 0974-9411 (Print), 2231-5209 (Online)

journals.ansfoundation.org

Research Article

Ethnobotanical survey, antioxidant activity of *Pistacia lentiscus* leaf extract from Honaïne region (Tlemcen, North-West Algeria) using *in vitro* and *in silico* methods

Kheira Errouane*

Laboratory of Vegetal, Microbial Productions and Valorizations (LP2VM), Department of Biotechnology, Faculty of Nature and Life Sciences, University of Science and Technology of Oran-Mohamed Boudiaf USTO-MB, B.P. 1505, El M'Naouar, Oran 31000, Algeria

Keltoum Dermeche

Environment and sustainable development laboratory, University of Relizane, Algeria; Department of Living and Environment, Faculty of Nature and Life Sciences, University of Science and Technology of Oran-Mohamed Boudiaf, Oran 31000, Algeria

Yousra Haggoug

Laboratory of Vegetal, Microbial Productions and Valorizations (LP2VM), Department of Biotechnology, Faculty of Nature and Life Sciences, University of Science and Technology of Oran-Mohamed Boudiaf USTO-MB, B.P. 1505, El M'Naouar, Oran 31000, Algeria

Riad El Houari Mezemaze

Laboratory of Vegetal, Microbial Productions and Valorizations (LP2VM), Department of Biotechnology, Faculty of Nature and Life Sciences, University of Science and Technology of Oran-Mohamed Boudiaf USTO-MB, B.P. 1505, El M'Naouar, Oran 31000, Algeria

*Corresponding author. E-mail: kheira.errouane@univ-usto.dz

Article Info

https://doi.org/10.31018/ jans.v17i3.6719

Received: March 13, 2025 Revised: August 03, 2025 Accepted: August 17, 2025

How to Cite

Errouane, K. *et al.* (2025). Ethnobotanical survey, antioxidant activity of *Pistacia lentiscus* leaf extract from Honaïne region (Tlemcen, North-West Algeria) using *in vitro* and *in silico* methods. *Journal of Applied and Natural Science*, 17(3), 1169 - 1179. https://doi.org/10.31018/jans.v17i3.6719

Abstract

In recent decades, the study of traditional use of medicinal and aromatic plants has gained in importance. Among these plants, *Pistacia lentiscus*, a traditional medicinal species widespread in Algeria, belongs to the Anacardiaceae family and is characterized by its persistent leaves. It is known locally as "Darw" and is recognized for its several therapeutic virtues since antiquity. This study aimed to gain an understanding traditional use of *P. lentiscus* by the local population of the Honaïne region, through ethnobotanical surveys, antioxidant capacity evaluation using the DPPH (2,2-diphenyl-1-picryl-hydrazyl) free radical scavenging method and docking simulation to predict and evaluate the effectiveness of ligand in binding to the active sites of the receptor glutathione (3R3E). The work showed that this medicinal plant was the most used species in this area, particularly for its therapeutic properties in treating respiratory problems (20%), rheumatism (16%), stomach and intestinal inflammation (14%), and dermatological affections (12%). Its leaves were the most widely used part of the plant (40%), with decoction being the main mode of preparation (35%). The spectrophotometric analyses revealed that this organ had a high total phenolic compounds content (80 mg GAE/g DW) and exhibited satisfactory antioxidant activity (IC₅₀: 0.37 mg/ml), confirming its traditional uses. The molecular docking simulations identified 3,4,5-tri-O-galloylquinic acid as a promising compound with a high docking score against the glutathione 3R3E enzyme (-8.24 kcal/mol). This study highlights the potential for promoting the production of natural antioxidants from *P. lentiscus* as a replacement for synthetic products and the contribution to the knowledge of medicinal flora in Algeria.

Keywords: Algeria, Antioxidant capacity, docking, ethnobotany, *Pistacia lentiscus*

INTRODUCTION

The flora of North Africa results from a multitude of ecosystems, offering a floristic wealth of plant species, several years of which are renowned for their traditional use in human therapy (Quezel and Santa, 1962; 1963; Zitouni, 2017; Chabha, 2024) and because of its climate (Mediterranean, arid and semi-arid) and the nature of its soils, Algeria has a particularly rich flora of medicinal and aromatic plants, most of which grow wild

(Quezel and Santa, 1962; 1963; Felidjet al., 2010; Chabha, 2024). Since ancient times, these plants have formed the basis of popular medicine and can also be used for food or as a condiment. Plant is rarely used whole. More often than not, one or more its parts are involved, each of which may have different applications. Despite advances in pharmacology, the medicinal plants are still widely used for therapeutic purposes in many countries worldwide, particularly in developing countries (Tabuti et al., 2003). Around 4,000 species and subspecies of vascular plants have been inventoried in Algeria; however, less information is known about the country's medicinal flora, with only 146 plant species listed as medicinal (Quezel and Santa, 1962; 1963; Hamel et al., 2018). In recent decades, the study of medicinal plants and their traditional use have experienced renewed interest in solving health problems; they constitute an important element of cultural heritage, also due to limited financial resources (El Yahyaoui et al., 2015). In Algeria, the study of traditional medicine is therefore interesting. Among Algerian medicinal and aromatic plants, there is the genus Pistacia, which is represented by four species: Pistacia lentiscus, Pistacia terebinthus, Pistacia vera, and Pistacia atlantica. Pistacia lentiscus L. (pistachio lentisk, Anacardiaceae) is a shrub found throughout the mediterranean region. It occupies all altitudes between 0 and 1200 m. This species grows on various soil types such as sandy-clayeyloamy, clayey-loamy, sandy, and clayey soils (Chabha, 2024). The Honaïne area (Tlemcen, North-West Algeria) was the subject of present work, with the objective of contributing to present knowledge, backup the medicinal plants of this region, by conducting ethnobotanical surveys, which focused the present research on the study of pistachio lentisk, plant most prominent within this zone where it with stands soil and climatic stresses perfectly, which it is distinguished from other pistachio trees by its evergreen foliage; the compound leaves are paripinnate, ending in a pair of leaflets, while those of other pistachio trees end in a single leaflet (Benhammou and Atik-Bekkara, 2009). The therapeutic properties of this species are part of traditional medicine in several Mediterranean regions, with various applications (Zitouni, 2017). In a second-hand study, we have dosed the phenolic compounds and evaluated the antioxidant activity of their leaf extracts, using spectrophotometric analysis and molecular docking, which evolved as a low-cost and time-saving method for predicting a compound's binding to its target protein. This approach determines crucial properties, such as the active site, angle, location, and binding strength of the compound-protein complex. This discipline enables researchers to gain a deeper understanding of compound-target protein interactions, leading to the development of more effective and targeted therapies (Belhachemi et al., 2022). The research work realized

therefore made it possible to establish the link between the use of *P.lentiscus* by the inhabitants of this region and its biochemical value.

MATERIALS AND METHODS

Ethnobotanical study Study area

The present study was conducted in the Honaïne area in 2023, located approximately 60 km North of the Tlemcen Wilaya in Northwestern Algeria. The region is situated at coordinates 35°10'35"N, 1°39'18"W, or roughly 35.1765° latitude and -1.65503° longitude. The climate in this region is characterized as dry and cold semi-arid.

Methodology

Due to the vast expanse of the research area, efforts were made to pinpoint the most frequently utilized medicinal plants among the local community. Field identification of these species was conducted with reference to the flora of Quezel and Santa (1962, 1963). The inquests of the ethnobotanical investigation were conducted in the form of discussions on the parts used; the method of preparation; the diseases treated and performed using 80 questionnaire forms (Supplementary S1), among people in contact with medicinal plants (villagers, practitioners of traditional medicine and herbalists). The 80 respondents were of both sexes, and of varying intellectual levels.

Dosage of phenolic compounds and antioxidant activity

Plant material

The treated plant material was *Pistacia lentiscus* L. (mastic tree, Fig. 1) leaf, harvested in the Honaïne region, dried at room temperature in the shade, ground to a fine powder, and packaged in a tinted bottle to prevent oxidation of the phenolic compounds, which was then used directly for the extraction of bioactive compounds.

Preparation of leaf extract

The extract was obtained using the method of Djeridane *et al.* (2006, modified); mixture of 20g of leaf powder with 100mL of methanol (80%, from Sigma. This solvent is known not only for obtaining better yields of bioactive compounds but also for its important role in preventing oxidation and degradation of these products) was submitted to continuous agitation for 24 hours at room temperature. The suspension obtained was then filtered by repeating the same operation three times and the filtrates recovered were then evaporated in a rotavaporator (at a temperature of 40°C), then taken up in methanol (80%, adjusted at 25 mg/mL, in a tinted bottle) and stored at 4°C until use.

Fig. 1. Pistachio lentisk (Pistacia lentiscus, Anacardiaceae): Leaves, fruits (berries) and branches

Determination of total phenolic compounds

The total phenolic compounds in the methanolic exdetermined spectrophotometrically (6715UV/Vis, Jenway, Multi-cell changer) using the method described by Singleton et al. (1999). To 20 µL of extract, 100 µL of freshly prepared Folin-Ciocalteu reagent (0.1 N, Sigma) was added. The mixture obtained was kept at rest for 3 min, then 300µL of a sodium carbonate solution (Na2Co3, 7.5%) was added, adjusted to a final volume of 3mL (by adding distilled water) and left to stand for 90min at room temperature and in the dark to avoid oxidation of the phenolic compounds. In addition, a calibration range for gallic acid (Sigma-Aldrich, Germany) was prepared under the same conditions to determine the content of these bioactive compounds. The reading was taken at an absorbance wavelength of 765 nm. The operation was repeated three times. The results were expressed as milligram equivalent of gallic acid per gram of dry weight (mg GAE/g DW).

2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging

To estimate the antioxidant activity of *P. lentiscus* leaves, dilutions were made from methanolic extracts (from 0.02 to 25 mg/mL), following the Brand-Williams *et al.* (1995) protocol, which is as follows: 0.1 mL of each dilution was added to 3.9 mL of freshly prepared DPPH• (2,2-diphenyl-1-picryl-hydrazyl, Sigma, 6X10⁻⁵M). The solutions obtained were then incubated at room temperature for 30min in the dark. Finally, their absorbance was measured at 517 nm. The reference used was ascorbic acid (from Prolabo).

The inhibition percentage (PI%) was calculated using the formula below:

 $PI = (A_0 - A_1) \times 100/A_0$

Eq. 1

Where:

A₀: Absorbance of control

A₁: Absorbance sample (extract with DPPH•)

The findings were expressed as $IC_{50}\%$ (the concentration of antioxidant required to decrease the initial

concentration by 50%).

Three replicates were performed for the antioxidant assays

Molecular docking

The primary goal of this scientific study was to use molecular docking simulations to predict and evaluate the effectiveness of ligand in binding to the active sites of the crystal structure of the receptor glutathione (3R3E), obtained from the Protein Data Bank (PDB: http://www.rcsb.org/pdb).

Glutathione (3R3E) was chosen as a target protein because it plays an important role in detoxification and protection against oxidative stress. *P. lentiscus*, known for its antioxidant, anticancer and anti-inflammatory effects. This choice enabled us to investigate the interaction of *P. lentiscus*'s bioactive compounds with this protein, thereby improving our understanding of the molecular mechanisms underlying its therapeutic effects against traditional pathologies.

All hydrogen atoms and additional kollman charges were added to the glutathione structure, and non-polar hydrogen atoms were combined. The ligands utilized are obtained from the PubChem database. The docking results were obtained using Autodock 4.2, the graphical user interface program Autodock Tools, and analyzed using Maestro Visualizer.

The inhibitor constant (Ki) was estimated using the equation Ki=exp(Δ G/RT), where Δ G, R, and T are the docking energy, gas constant (1.9872036×10⁻³ kcal/mol) and ambient temperature (298.15 K), respectively (Yung-Chi and Prusoff, 1973).

The validation for the docking methodology was performed by re-docking, using RMSD, which provides a good measure of the match between their atomic positions on an atom-by-atom basis. A docking algorithm reproduces a crystallographic conformation if its calculated RMSD is below 2.0 Å.

Statistical analysis

The data were presented as the mean value ± standard deviation. The statistical tests for this study were performed using ANOVA.

RESULTS AND DISCUSSION

Ethnobotanical surveys Inventory of major medicinal plants

The ethnobotanical study of medicinal plants in the Honaïne region allowed us to compile an inventory of

43 predominantly species encountered and used by the local population with medicinal properties, which are listed in alphabetical order (Table 1).

The botanical identification revealed that the most prevalent families encountered were the *Lamiaceae* (15.55%), followed by the *Fabaceae* and *Cupres-*

Table 1. Ethnobotanical surveys results of medicinal species most commonly used in the Honaïne region (Source: On the basis of the responses of the inhabitants of the population to the questions asked in the form of a survey)

	Latin plant name	Botanical family	Part used	Method of preparation	Disease treated (treatment with each species)
1	Arenaria serpyllifolia	Caryophyllacea e	Whole plant	Infusion, decoction	Urinary pain (kidney problem)
2	Arisarum vulgare	Araceae	Leaves, bulbs or tubers	Decoction	Rheumatism, digestive disorders (laxative), headaches, asthma, flu, snake bites, wounds
3	Artemisia campestris	Asteraceae	Leaves, flowers	Infusion	Muscle spasms, stomach pains (aids gastric digestion), urinary affections (diuretic action) and other affections
4	Arundo donax	Poaceae	Roots, leaves	Infusion, decoction	Fever, bronchitis, urinary affection, high blood pressure, toxins (depurative action), milk secretion
5	Brunella grandiflora	Lamiaceae	Leaves, flowers	Infusion, decoction	Bleeding hemorrhoids or minimal bleeding from a wound
6	Calicotome villosa	Fabaceae	Flowers	Infusion	Affections
7	Ceratonia siliqua	Fabaceae	Fruit (pods and seeds)	Consumed, decoction, other	Diabetes, digestive disorders (antidiuretic, laxative)
8	Cistus albidus	Cistaceae	Leaves, branches	Infusion, decoction, fumigation	Rheumatism, coughs, urinary infections, wrinkles
9	Cistus ladaniferus	Cistaceae	Flowers, leaves, stems	Essential oil	Skin affections (healing and regenerating action), hemorrhage
10	Cistus monspeliensis	Cistaceae	Flowers	Powder	Skin infections, hemorrhage
11	Cupressus arizonica	Cupressaceae	Fruits, leaves	Decoction	Rheumatism, respiratory affections
12	Cupressus sempervirens	Cupressaceae	Fruits	Decoction	Rheumatism, varicose veins, respiratory affections
13	Echium vulgare	Boraginaceae	Leaves, flowers, roots	Infusion, decoction	Stomach pain, digestive problems
14	Elymus repens	Poaceae	Rhizome	Powder	urinary affections
15	Erica multiflora	Ericaceae	Leaves, flowers	Infusion, decoction	Urinary infection
16	Genista anglica	Fabaceae	Stems, flowers, leaves	Infusion	Heart problems, urinary infections, toxins
17	Genista pilosa	Fabaceae	Flowers, stems, leaves	Infusion	Heart problems, toxins
18	Genista scorpius	Fabaceae	Flowers, stems, leaves	Infusion	Heart problems, urinary infections, toxins, high blood pressure, rheumatism
19	Inula viscosa	Asteraceae	Leaves, stems	Decoction	Respiratory diseases, rheumatism, urinary diseases, digestive disorders
20	Jasminum fruticans	Oleaceae	Flowers	Infusion	Digestive problems, insomnia
21	Juniperus oxycedrus	Cupressaceae	Leaves, fruits	Infusion	Rheumatism, digestive disorders, other affections
22	Juniperus phoenicea	Cupressaceae	Leaves, fruits	Infusion	Rheumatism, urinary infections, other affections
23	Lavandula dentata	Lamiaceae	Flowers, leaves	Infusion, fumigation	Rheumatism, urinary disorders, toxins, other affections, headaches

Contd.....

Table 1. Contd						
24	Lavandula stoechas	Lamiaceae	Flowers, leaves	Infusion	Respiratory affections	
25	Malva sylvestris	Malvaceae	Flowers, stems	Infusion, consumed	Respiratory affections (cough, throat irritation, asth- ma), intestinal disorders (constipation)	
26	Myrtus communis	Myrtaceae	Leaves, flowers, fruits	Infusion	Respiratory affections, diarrhea, hemorrhoids	
27	Opuntia ficus- indica	Cactaceae	Flowers, fruits, stems	Consumed, infusion	Urinary affections, wrinkles, fatigue	
28	Picea pungens	Pinaceae	Needles	Infusion	Respiratory affections	
29	Pinus halepensis	Pinaceae	Seeds, bark	Infusion, decoction	Cholesterol, respiratory affections (colds, bronchitis)	
30	Pistacia lentiscus	Anacardiaceae	Whole plant	Decoc- tion,infusion, powder, fixed oil, essential oil	Respiratory, stom- ach,dermatological affections and Rheumatism	
31	Plantago media	Plantaginaceae	Leaves	Infusion, decoction	Respiratory affections, burns	
32	Platanus occidentalis	Platanaceae	Leaves, roots	Decoction	High blood pressure	
33	Rosmarinus officinalis	Lamiaceae	Leaves, flowers, stems	Infusion, decoction, fumigation	Rheumatism, stress, respiratory affections, stomach pains, burns, healing, dyspepsia (stomach pains linked to poor digestion: Carminative).	
34	Rubus caesius	Rosaceae	Leaves, fruits	Infusion, consumed	Respiratory affections	
35	Satureja montana	Lamiaceae	Leaves	Infusion, decoction	Affections	
36	Silene latifolia	Caryophyllacea e	Roots	Decoction	Respiratory and urinary affections	
37	Sinapis arvensis	Brassicaceae	Leaves, stems, flowers	Consumed	Fatigue	
38	Tamarix aphylla	Tamaricaceae	Pulp, bark, leaves	Infusion, decoction, maceration	Respiratory affections, digestive problems (laxative), anaemia	
39	Tetraclinis articulata	Cupressaceae	Leaves, stems	Infusion, decoction	Rheumatism, respiratory affections (coughs, colds)	
40	Thymus capitatus	Lamiaceae	Aerial part	Infusion	Affections	
41	Thymus vulgaris	Lamiaceae	Aerial part	Infusion, fumigation	Affections	
42	Trifolium thalii	Fabaceae	Leaves, flowers	Infusion	Respiratory affections	
43	Urtica dioica	Urticaceae	Leaves, roots	Infusion	Urinary affections, anemia	

saceae, with 13.33% and 11.11%, respectively. In the Tlemcen Mountains national park, Felidj et al. (2010) recorded that Asteraceae predominated (18%), followed by Poaceae (8%), Fabaceae, and Lamiaceae (7%). According to these authors, the mountains of Tlemcen as a whole offer highly diverse botanical land-scapes linked to the various climatic, soil, and topographical conditions specific to the region, which stretches from the coast to the high plateaus of the Tellian Atlas. For thousands of years, the region's forest heritage has undergone changes due to climatic variations and human activity (deforestation, overgrazing), the latter reinforced by more recent climatic variations (summer drought, irregular rainfall). Several species

classified as endemic are in the process of regression or even extinction due to the degradation of their natural environment. Among the most well-known in terms of regression: Delphinium mauritanicum, Genista tricuspidata, Hippocrepis minor ssp mumbyana, Scrofularia laevigata, Thymus ciliates ssp coloratus, Centaurea parviflora, Helianthemum helianthemoïdes, Thymus algeriensis. These authors also reported that one of the endemic species most threatened by the current rapid and intensive degradation of the environment is Ammoides pussila (an aromatic and medicinal plant). According to several studies carried out in Algeria and Morocco (Salhi et al., 2010; El Hilah et al., 2015; El Alami et al., 2016; Khitri et al., 2016; Rhattas et al., 2016;

Kadri et al., 2018; Mansouri et al., 2018; Lazli et al., 2019), the most frequently found botanical families are as follows: Lamiaceae, Poaceae, Apiaceae, Astéraceae, Fabaceae, Solanaceae, Caryophylaceae, Brassicaceae, Cistaaceae, Ranunculaceae, Rubiaceae, Plantaginaceae, Apocynaceae, Thymelaeaceae, Cupressaceae, Pinaceae, Myrtaceae, Malvaceae, Iiliaceae, Asparagaceae, Ericaceae and Anacardiaceae.

The present analysis also revealed that women used medicinal plants more frequently (62.50%) than men (37.50%), a finding that has been reported by several authors (Hmamouchi, 2001; Salhi *et al.*, 2010). Indeed, the vast majority of medicinal plants users are much more old people.

Usage of Pistacia lentiscus by the local population

In the region studied, the species most commonly used by the inhabitants was the *Pistachio lentisk* (*Pistacia lentiscus*, 20%: Anacardiaceae), known in Algeria as "Darw". The results obtained from ethnobotanical surveys will be deposited in the reference herbarium at the National Higher School of Agronomy in Algiers. These findings align with those of Souilah *et al.* (2023) in the El Kala zone (northeastern Algeria), where its usage was estimated at 9.69%.

In Honaïne, The leaves were the most widely used part of the plant, accounting for 40% (Table 2). According to the ethnobotanical study of the *P. mastic* tree carried out in the Wilaya of El Tarf, North-East Algeria (Beldi *et al.*, 2021), the fruits with oil were the most commonly used parts of this plant (66% vs. 24% for the leaves). Regarding the method of preparation, decoction was recorded first, with a percentage of 35, and the disease most treated in the region studied by *P. lentiscus* was respiratory affections (20%). In eastern Algeria, in addition to external applications, the fixed mastic oil extracted is also used to treat respiratory problems (Belhachat, 2019), in comparison with the leaves, stems, and roots, which are rather recommended for internal applications.

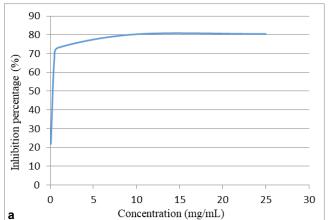
Generally, the high frequency of leaf use has already been reported in other studies of medicinal plants, such as those by Benlamdini *et al.* (2014), Rhattas *et al.* (2016), Kadri *et al.* (2018), and Lazli *et al.* (2019). This can be explained by the ease and speed of harvesting, but also by the fact that they are the site of photosynthesis and the storage of secondary metabolites (biological activities) (Bitsindou,1986; Salhi *et al.*, 2010).

In other areas of Algeria and Morocco, the researchers listed above reported that aqueous decoction, infusion and powder were the most commonly used preparation methods. Salhi *et al.* (2010) explain this by saying that decoction allows the most active ingredients to be collected and reduces or cancels out the toxicity of certain medicinal plants recipes. Indeed, in phytotherapy, there

are various ways of preparing plants, depending on the type of application (El Hilah et al., 2015). Generally, infusion is suitable for the fragile parts of plants (flowers, leaves, parts rich in volatile and aromatic substances), while decoction is the preferred method for the more rigid and fibrous parts of the plant (certain roots, leaves, seeds, and bark). Other preparation methods, such as maceration (cold infusion) are generally used for plants containing thermolabile and heatsensitive compounds (such as plants rich in mucilage). Kadri et al. (2018) noted that medicinal plants were used to treat respiratory diseases. However, the other authors mentioned above have observed that the majority of these plants are used to care for the digestive system, while others are used to treat a variety of ailments.

Total phenolic compounds determination

A content of 80±0.6 mg GAE/g DW of total phenolic compounds was estimated in pistachio lentisk leaves. Comparing this findings level obtained with those of the studies carried out by Zitouni (2017), Lasmar and Laribi (2020) and Souilah et al. (2023), a difference is noticed; they were higher than those of the present work, these authors registered a content of 216 (in leaves of the same species, from the Nédroma region, Tlemcen), 155 (in leaves from the Skikda area) and 306.5 mg GAE/gDW (in El-Kala area, Algeria), respectively, which of the leaf was the part of the plant richest in these bioactive compounds, compared with the rest of the organs (fruit, seeds, root and stem). In contrast, the levels obtained in the leaves of Ain Fezza (Tlemcen) were lower: 0.90 mg/g of dry extract (Benhammou et al., 2007).


This difference in results can be attributed to the variations in climatic and soil conditions of the plant's biotope and interspecific differences (Arab *et al.*, 2014), as well as the harvesting stage of pistachio lentisk leaves. It may also be due to extraction conditions (Benhammou and Atik-Bekkara, 2009; Chu *et al.*, 2022), in particular the method used and the presence of interfering substances (Gouegoui Bohui *et al.*, 2018). Furthermore, the fixed oil extracted from the fruits of this plant species (in the Jijel region, Algeria) contained a content of 1.264 mg GAE/g oil (Sid and Dib, 2018).

In vitro antioxidant activity

The antioxidant activity determined using the DPPH• free radical scavenging method. revealed that the leaf extract of *P. lentiscus* has a satisfactory antioxidant power (with an IC₅₀ approximate value of 0.37±0.09 mg/mL (370 μg/mL) of extract, Fig. 2), which supports the traditional use of this part of the plant by the Honaïne population (traditional medicine): The leaves are used especially to treat respiratory problems and asthma, eczema and stomach pains, for example, a decoc-

Table 2. Ethnobotanical study of *Pistacia lentiscus* (Source: Based on the responses of the inhabitants of the population to the questions asked in the form of a survey)

Plant name	Part used percentage	Preparation method (mode for each organ)	Preparation percentage	Percentage of Disease treated
Pistacia lentiscus	Leaves (40%)	Decoction, infu- sion and powder	Decoction (35%) Infusion (25%)	Respiratory allergy problems, bronchitis, asthma (20%: By using leaf and stem) Rheumatism (16%: By using roots) Colon and stomach inflammation (14%: By using leaf, stem and
	Branches (25 %) Roots (20%)	Decoction, infusion Decoction	Powder (20%) Fixed oil (18%) Others (2%)	
	Fruit (15%)	Fixed oil tradi- tionally extracted cold		roots), Eczema, burns (12%: By using leaf, stem and fixed oil) Others ailments (38%)

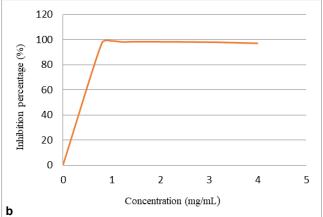


Fig. 2. In vitro anti-radical activity. a, Profile of Pistacia lentiscus leaf extract; b, Profile of ascorbic acid

tion of the dried roots is effective against ulcers and intestinal inflammation. In fact, P. lentiscus is a medicinal plant used to treat a range of diseases, including rheumatism, by promoting lymphatic and venous drainage (Belhachat, 2019). On the other hand, Beldiet al. (2021) reported that when applied externally, the leaves and stems are recommended for the treatment of skin problems. These parts of the plant are then dried and ground to obtain a powder to which vegetable oil or butter will be added. For internal use, the leaves and stems can also be used as an infusion to treat conditions of the digestive and respiratory systems, as well as dizziness. According to Simić et al. (2007), phenolic compounds can function as antioxidants due to their ability to capture free radicals, there by interrupting the chain of free radicals through their hydrogen-donating effect. We can therefore explain the foliar antioxidant potential of P. lentiscus obtained by its phenolic composition.

As follows to Baratto *et al.* (2003), the free radical scavenging activity in the leaves of the *P. lentiscus* increases with the number of galloyl groups on the quinic acid backbone (galloyl quinic derivatives). According to Zitouni (2017), who worked on the same species, hydroxycinnamic acids have been shown in numerous

studies to be the most potent phenolic compounds, antioxidant, exhibiting anticancer, and antiinflammatory effects. According to this author, five hydroxycinnamic acids have been identified in P. lentiscus (caffeic acid, ferulic acid, synapic acid, rosmarinic acid, ρ-coumaric acid) and others seventeen phenolic compounds (including luteolin, luteolin 7-O glucoside, isoquercitrin, hyperoside, oleuropein, rutin, kaempferol, kaempferol 3-O rutinoside, isorhamnetin, apigenin, laricitrin and polydatin of which twelve flavonoids have been identified). It is well known that flavonoids offer a wide range of biological properties, including anti-inflammatory and antioxidant activities, which make them potentially useful in the prevention of cancer, diabetes and neurodegenerative diseases (Kang et al., 2010; Zitouni, 2017; Emeraux, 2019).

Moreover, the present work results are close to those of the study by Arab *et al.* (2014, IC_{50} : 0.2 mg/mL, for leaves from the Boumerdes region). These authors demonstrated that the phenolic extract proved very good antioxidant activity compared to other parts of the plant. Additionally, Belhachat *et al.* (2017) and Belhachat (2019) declared that the extracts of the leaves, red fruits, and black fruits of *P. lentiscus* (Bouira area) were more effective than the essential oils (IC_{50} of

0.758, 0.870, and 0.880 mg/L, respectively). In addition, the IC $_{50}$ value obtained is comparable to that reported by Zitouni (2017), which found the most potent anti-radical activity in the leaf and stem parts with IC $_{50}$ values of 0.069 and 0.057 mg/mL, respectively. On the other hand, compared to other literature, the results obtained are negligible in comparison to those of Lasmar and Laribi (2020), who reported a fairly high potency in the species studied from the Skikda area (IC $_{50}$: 1.4 µg/mL). Souilah *et al.* (2023) have registered an IC $_{50}$ of 2.75 µg/mL. This can be attributed to the chemical composition of the plant studied, which varies according to factors such as geographical origin, harvesting period, environmental conditions, and storage time (Su *et al.*, 2006).

Indeed, all therapeutic properties of *P. lentiscus* are due to its biological activities (antimicrobial, antioxidant, anti-inflammatory, anti-hypertensive and insecticide, Benhammou *et al.*, 2007; Benhammou and Atik-Bekkara, 2009; Belhachat, 2019; Lasmar and Laribi, 2020).

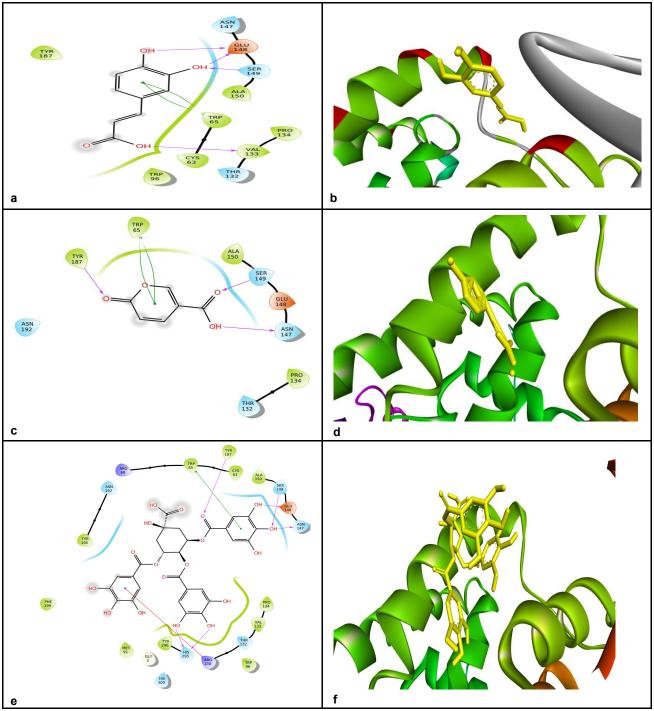
Molecular docking

It has recently emerged as an effective method for *in silico* screening. It includes a computer search for ligands that are both energetically and geometrically compatible with a protein's binding site (receptor).

A molecular docking study was conducted on three phenolic compounds of *P. lentiscus:* 3,4,5-tri-O-galloylquinic acid, p-coumaric acid and caffeic acid, to investigate their mode of inhibition in the binding site of glutathione (3R3E). The docked compounds exhibited strong binding affinities against the active site of glutathione (3R3E), and their ligand-receptor interactions were illustrated using 2D and 3D diagrams (Fig. 3), revealing the predominant formation of hydrogen bonds with residues in the active site and electrostatic interactions.

Specifically, 3,4,5-tri-O-galloylquinic acid interacted with the active site by forming four hydrogen bonds with Ser149, Glu148, Asn147 and Tyr187 amino acids, as well as electrostatic interactions such as van der Waals

interactions with Trp65 and Arg130 (Fig.3e, f). The interaction between ρ -coumaric acid and the active site involved three hydrogen bonds with Ser149, Asn147, and Tyr187 amino acids, along with electrostatic interactions including van der Waals interactions with Trp65 (Fig.3c,d). Likewise, the interaction between caffeic acid and the active site was characterized by four hydrogen bonds with the amino acids Glu148 (1 bond), Ser149 (2 bonds), and Val133 (1 bond), as well as electrostatic interactions, including van der Waals interactions with Trp65 (Fig. 3a, b).


Table 3 summarises the data from the binding energies and Ki of 3,4,5-tri-O-galloylquinic acid, ρ -coumaric acid and caffeic acid. The binding energies between the three chemicals and the protein 3R3E predicted to be -8.24 kcal/mol, -6.10 kcal/mol and -5.94 kcal/mol, respectively. Redocking was successfully performed with RMSD of 1.3845 (<2Å).

The binding energy and Ki results showed that the complex formed by 3,4,5-tri-O-galloylquinic acid and the target protein exhibited the best binding interactions, indicating good and strong stability compared to the other two complexes formed by $\rho\text{-}\text{coumaric}$ acid and caffeic acid with the protein. The Ki for $\rho\text{-}\text{coumaric}$ acid-3R3E and caffeic acid-3R3E complexes is 33.78 μM and 44.25 μM , respectively. The hydrophobic interaction with the residual amino acids in the glutathione activation site and the hydrogen bonding interaction with the amino acid in the activation site of the compounds studied make them promising candidates for glutathione 3R3E.

Molecular docking study by Lanez *et al.* (2022) showed that 3-nitrophenylferrocene is the most inactive compound against glutathione reductase enzyme, having the lowest docking score of -16.96 kJ/mol. Bouakline*et al.* (2024) confirmed that the finding of anti-diabetic activity was consistent with the molecular docking study of the main phenolic compounds of *P. lentiscus* leaf extracts, where a remarkable binding affnity against α -amylase was observed, with values of -7.631 (kcal/mol), -6.818 (kcal/ mol), and -5.517 (kcal/ mol) for the major compounds catechin, quercetin-3-

Table 3. Docking scores of ligand with glutathione 3R3E

Compound	Binding scores (kcal/mol)	Type of bond	Ki (μM)
Caffeic acid	-5.94	Conventional Hydrogen Bond Pi-Pi Stacked Pi-Alkyl	44.25
ρ-coumaric acid	-6.10	Conventional Hydrogen Bond	33.78
3,4,5-tri-O-galloylquinic acid	-8.24	Conventional Hydrogen Bond Pi-Pi Stacked Pi-Alkyl	0.9

Fig. 3. Interactions of caffeic acid, ρ -coumaric acid and 3,4,5-tri-O-galloylquinic acid within glutathione binding site (PDB: 3R3E). 2D (a) and 3D (b) interactions of caffeic acid; 2D (c) and 3D (d) interactions of ρ -coumaric acid; 2D (e) and 3D (f) interactions of 3,4,5-tri-O-galloylquinic acid

glucoside, and gallic acid, respectively.

Conclusion

The present study focused on an ethnobotanical survey from the Honaine region of Algeria, concentrating on *P. lentiscus* and its most important uses. This work was complemented by an estimation of phenolic compound content, molecular docking and antioxidant activity of

its leaf extracts, which is commonly used in the study area, to establish a link between the use of this medicinal plant and its biochemical properties. The results obtained a significant amount of phenolic compounds and a satisfactory antioxidant power, which could constitute a database for further research on this organ. This could be used as an active ingredient in anticancer drugs or as food additives to replace synthetic compounds. However, this work needs to be followed up by

other studies; for example, it would be more interesting to conduct chromatographic analyses to identify the active principles of this plant. It would also be important to conduct experimental research to estimate the biological activities of others (antimicrobial, anti-inflammatory, antidiabetic, anticancer activities) in *P. lentiscus* and the other medicinal plants identified in this work, to gain a better understanding of them and develop them in pharmacology.

Supplementary Information

The author(s) is responsible for the content or functionality of any supplementary information. Any queries regarding this matter should be directed to the corresponding author. The supplementary information is available for download from the article's webpage and will not be included in the print copy.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Arab, K., Bouchenak, O. & Yahiaoui, K. (2014). Phytochemical study and evaluation of the antimicrobial and antioxidant activity of essential oils and phenolic compounds of *Pistacia lentiscus* L. *Journal of Fundamental and Applied Sciences*, 6, 77-91. https://doi.org/ 10.4314/jfas.v6i1.7
- Baratto, M. C., Tattini, M., Galardi, C., Pinelli, P., Romani, A., Visiolid, F., Basosi, R. & Pogni, R. (2003). Antioxidant activity of Galloyl quinic derivatives isolated from *Pistacia lentiscus* leaves. *Free Radical Research*, 37, 405– 412.https://doi.org/10.1080/1071576031000068618
- Beldi, M., Merzougui, H. & Lazli, A. (2021). Etude ethnobotanique du Pistachier lentisque *Pistacia lentiscus* L. dans la wilaya d'El Tarf (Nord-est algérien). *Ethnobotany Research and Applications*, 21, 1-17. https://doi.org/10.32859/era.21.09.1-18
- Belhachat, D., Aid, F., Mekimene, L. & Belhachat, M. (2017). Phytochemical screening and in vitro antioxidant activity of *Pistacia lentiscus* berries ethanolic extract growing in Algeria. *Mediterranean Journal of Nutrition and Metabolism*, 10, 273–285. https://doi.org/10.3233/MNM-17169
- Belhachat, D. (2019). Etude phytochimique des extraits de Pistacia lentiscus (L.). Activité antioxydante, antimicrobienne et insecticide. Thesis. Ecole Nationale Supérieure Agronomique- El-Harrach-Alger, Algérie.
- Belhachemi, M. H. M., Benmohammed, A., Saiah, H., Boukabcha, N., Saidj, M., Dege, N., Djafri, A. & Chouaih, A. (2022). Synthesis, structural determination, molecular docking and biological activity of 1-(4-fluorobenzyl)-5bromolindolin-2,3-dione. *Journal of Molecular Structure*, 1265, 133342. https://doi.org/10.1016/j.molstruc.2022.13 3342
- Benhammou, N., Atik-Bekkara, F. & Kadifkova-Panovska, T. (2007). Antiradical capacity of the phenolic compounds

- of Pistacia lentiscus L. and Pistacia atlantica Desf. Advances in Food Sciences, 29, 155-161
- Benhammou, N. & Atik-Bekkara, F. (2009). Activité antibactérienne de l'huile essentielle de *Pistacia lentiscus* L. de deux stations de la région de Tlemcen (Algérie).H. Greche & A. Ennabili (éd.). Recherches sur les plantes aromatiques et médicinales. Actes du congrès international des 22-24 mars 2007, Mezraoua (Taounate) & Fès, Maroc, 281-285
- Benlamdini, N., Elhafian, M., Rochdi, A. & Zidane, L. (2014). Étude floristique et ethnobotanique de la flore médicinale du Haut Atlas oriental (Haute Moulouya). Journal of Applied Biosciences, 78, 6771-6787. http://dx.doi.org/10.4314/jab.v78i1.17
- 10. Bitsindou, M. (1986). Enquête sur la phytothérapie traditionnelle à Kindamba et Odzala (Congo) et analyse de convergence d'usage des plantes médicinales en Afrique centrale. Thesis. University of Libre de Bruxelles
- Bouakline, H., Bouknana, S., Merzouki, M., Ziani,I., Challioui, A., Bnouham, M., Tahani, A. & EL Bachiri, A. (2024). The Phenolic Content of *Pistacia lentiscus* Leaf Extract and Its Antioxidant and Antidiabetic Properties. *The Scientific World Journal*, 2024, 1-11.https://doi.org/10.1155/2024/1998870
- Brand-Williams, W., Cuvelier, M.E. & Berset, C. (1995).
 Use of a free radical method to evaluate antioxidant activity. *Lebensm.-Wiss.-Technol.-Food Science and Technology*, 28, 25-30. https://doi.org/10.1016/S0023-6438(95) 80008-5
- 13. Chabha, S. (2024). Etude de la composition chimique et du potentiel biologique de *Pistacia lentiscus*, plante médicinale traditionnelle d'Algérie. Thesis.University of Picardie Jules Verne and Mouloud Mammeri of Tizi-Ouzou, Algeria.
- Chu, J.Z., Ming, Y.F., Cui, Q., Zheng, N., Yang, S.D., Li, W.H., Gao, H., Zhang, R. & Cheng, X. H. (2022). Efficient extraction and antioxidant activityof polyphenols from *Antrodia cinnamomea*. *BMC Biotechnology*, 22, 1-12. https://doi.org/10.1186/s12896-022-00739-5
- Djeridane, A.Yousfi, M., Nagjemi, B., Maamri, S., Djireb, F.& Stocker, P. (2006). Phenolic extracts from various Algerian plants as strong inhibitors of porcine liver carboxylesterase. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 21, 719–726. https://doi.org/10.1080/14756360600810399
- El Alami, A., Loubna, F.& Chait, A. (2016). Etude ethnobotanique sur les plantes médicinales spontanées poussant dans le versant nord de l'Atlas d'Azilal (Maroc). Algerian Journal of Natural Products, 4, 271-282
- 17. El Hilah, F., Ben Akka, F., Dahmani, J.,Belahbib, N. & Zidane, L. (2015). Étude ethnobotanique des plantes médicinales utilisées dans le traitement des infections du système respiratoire dans le plateau central marocain. *Journal of Animal & Plant Sciences*, 25, 3886-3897
- El Yahyaoui, O., Ait ouaaziz, N., Sammama, A., Kerrouri, S., Bouabid, B., Lrhorfi, L. A., Zidane, L. & Bengueddour, R. (2015). Etude ethnobotanique: Plantes médicinales commercialisées à la province de Laâyoune; identification et utilisation. *International Journal of Innovation and Ap*plied Studies, 12, 533-541
- Emeraux, E. (2019). Propriétés biologiques des flavonoïdes: étude bibliographique et évaluation de

- l'activité antioxydante. Thesis, Depart. Pharmacy. University of Lorraine, France. https://hal.univ-lorraine.fr/hal-03297878/document
- Felidj, M., Bouazza, M. & Ferouani, T. (2010). Short paper about the floristic community and the interest of Ammoides pussila (verticillata), a medicinal plant from Mounts of Tlemcen National Park (Western Algeria). Geo-Eco-Trop, 34, 147–154
- 21. Gouegoui Bohui, P. S., Adima, A. A., Niamké, F. B. & N'Guessan, J. D. (2018). Etude comparative de trois méthodes d'extraction des flavonoïdes totaux à partir des feuilles de plantes médicinales: Azadirachta indicaet Psidium guajava. Journal de la Société Ouest-Africaine de Chimie, 046, 50- 58
- 22. Hamel, T., Sadou, S., Seridi, R., Boukhdir, S. & Boulemtafes, A.(2018). Pratique traditionnelle d'utilisation des plantes médicinales dans la population de la péninsule de l'edough (nord-est algérien). *Ethnopharmacologia*, 59, 75-81
- 23. Hmamouchi, M. (2001). Les plantes médicinales et aromatiques marocaines. 2ndEd. [s.l.]: s.n.
- 24. Kadri, Y., Moussaoui, A. & Benmebarek, A. (2018). Étude ethnobotanique de quelques plantes médicinales dans une région hyper aride du Sud-ouest Algérien «Cas du Touat dans la wilaya d'Adrar». Journal of Animal & Plant Sciences, 36, 5844-5857
- Kang, J., Li, Z., Wu, T., Jensen,G. S., Schauss, A. G. & Wu, X. (2010). Antioxidant capacities of flavonoid compounds isolated from acai pulp (*Euterpe oleracea Mart.*). Food Chemistry, 122, 610-617
- Khitri, W., Lachgueur, N., Tasfaout, A., Lardjam, A. & Khalfa, A. (2016). Plantes antilithiasiques utilisées en médecine traditionnelle dans la ville d'Oran, Algérie. Revue d'ethnoécologie, 9,1-13. https://doi.org/10.4000/ethnoecologie.2511
- Lanez, T., Ben Amara, H., Adaika, A., Lanez, E., Khenoufa, A. & Zegheb, N. (2022). In vitro and in silico antioxydant activity, toxicity prediction, and molecular docking study of 3- and 3,3'-nitrophenylferrocene and their reduced amines. *Journal of Fundamental and Applied Sciences*, 14, 417-430. http://dx.doi.org/10.4314/jfas.1239
- 28. Lasmar, M. & Laribi, A. (2020). Etude de l'activité antioxydante et enzymatique des extraits de la plante médicinale *Pistacia lentiscus*. Mémoire de Master. Université de Frères Mentouri Constantine 1, Algérie
- 29. Lazli, A., Beldi, M., Ghouri, L. & Nouri, N. H. (2019). Étude ethnobotanique et inventaire des plantes médicinales dans la région de Bougous (Parc National d'El Kala,- Nord-est algérien). Bulletin de la Société Royale des Sciences de Liège, 88, 22–43. https://doi.org/10.25518/0037-9565.8429
- Mansouri, S., Miara, M. J. & Hadjadj-Aoul, S. (2018). Etat des connaissances et conservation de flore endemique dans la region d'Oran (Algerie occidentale). Acta Botanica Malacitana, 43, 23-30. https://doi.org/10.24310/abm.v43i0.4361

- Quezel, P. & Santa, S. (1962). Nouvelle flore de l'Algérie et des régions désertiques méridionales. Vol. 1, Ed. Centre National de la Recherche Scientifique, Paris, 1– 565.
- Quezel, P. & Santa, S. (1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales. Vol. 2, Ed. Centre National de la Recherche Scientifique, Paris, 571– 1091
- Rhattas, M., Douira, A. & Zidane, L. (2016). Étude ethnobotanique des plantes médicinales dans le Parc National de Talassemtane (Rif occidental du Maroc). *Journal of Applied Biosciences*, 97, 9187–9211. http:// dx.doi.org/10.4314/jab.v97i1.5
- 34. Salhi, S., Fadli, M., Zidane, L. & Douira, A. (2010). Études floristique et ethnobotanique des plantes médicinales de la ville de Kénitra (Maroc). *Lazaroa*, 31, 133-146. http:// dx.doi:10.5209/rev_LAZA.2010.v31.9
- 35. Sid, F. & Dib, R. (2018). Etude de l'activité antioxydante de l'huile de plante *Pistacia lentiscus*. Mémoire de Master. Université de Mohammed Seddik Ben Yahia-Jijel, Algérie
- Simić, A., Manojlović, D., Šegan, D. & Todorović, M. (2007). Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. *Molecules*, 12, 2327-2340. https://doi.org/10.3390/12102327
- Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods *In Enzymology*, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
- Souilah, N., Benabdallah, A., Bendif, H., Mohamed Djamel, M., Daoud, N., Mustafa, A. M., Abdullah Yilmaz, M., Öztürkl, M., Caprioli, G. & Maggi, F. (2023). Ethnobotanical investigation of *Pistacia lentiscus* L. grown in El Kala (Algeria), and phytochemical study and antioxidant activity of its essential oil and extracts. *Natural Product Research*, 37,1583-1588. https://doi.org/10.1080/14786419.202 1.2024825
- Su, X., Duan, J., Jian, Y., Shi, J. & Kakuda, Y. (2006). Effect of soaking conditions on the antioxidant potentials of Oolong tea. *Food Composition and Analysis*, 19, 348-353.https://doi.org/10.1016/j.jfca.2005.02.005
- Tabuti, J.R.S., Lye, k. A. & Dhillion, S.S. (2003). Traditional herbal drugs of Bulamogi Uganda: plants, use and administration. *Journal of Ethnopharmacology*, 88, 19-44. https://doi.org/10.1016/S0378-8741(03)00161-2
- 41. Yung-Chi, C. & Prusoff, W.H. (1973). Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochemical Pharmacology*, 22, 3099–3108. https://doi.org/10.1016/0006-2952(73)9 0196-2
- 42. Zitouni, A. (2017). Profil polyphénolique et activité antioxydante de deux plantes médicinales Pistacia lentiscus. L et Gymnocarpos decander. Forsk. Thesis. University of Abou bekr Belkaid de Tlemcen, Algéria