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Abstract

Cotton leaf curl virus disease (CLCuV) incidence has increased in the northern states of India (Punjab, Haryana, and Raja-
sthan) since 1993.CLCuVreducesthenumberofharvestablebollsby15-87 % and seed cotton yield by 11-92%, depending on the
extent and timing of Infection.Cotton leaf curl virus disease (CLCuV) is among the most damaging cotton diseases.It was first
found on Gossypium barbadense in Nigeria (Africa) in 1912. CLCuV was first reported in India in Sri Ganganagar (Rajasthan) in
1993 and in Punjab (India) in 1994. Various mathematical models have been employed to create models which describe epi-
demic dynamics.In this study, an attempt was made to compare three models —namely, the Monomolecular, Logistic, and
Gompertz models —using secondary data from 2017 to 2022 for the prediction of Cotton Leaf Curl Disease (CLCuD).The stud-
ied models were evaluated using goodness-of-fit criteria, i.e., the Coefficient of determination and root mean square error.lt was
observed that the Coefficient of Determination (R?) was found to be in the range of 0.98 to 0.99 for all years,whereas the root
mean square value was observed in the range of 2.06 to 16.25.The value of the Coefficient of determination (R?) was very high,
and the mean square error was very low for the years 2017, 2019, 2020, and 2022, respectively, for the logistic model com-
pared to other studied models. It was observed that 98 to 99 % the variation in disease intensity was explained by time, and an
error was also observed to be minimal for all years.lt was also concluded that, for the years 2017 to 2022, except for 2018 and
2021, the logistic model was found to be the best fit for predicting disease severity. In contrast, for 2018 and 2021, the Gom-
pertz model was found to be the best. The analysis was performed using R and Excel software.

Keywords: Cotton leaf curl viral disease (CLCuV), Growth model, Coefficient of determination, root mean square error,
prediction

INTRODUCTION in various forms. However, the cultivation of cotton has

been severely affected by Cotton Leaf Curl Disease
Cotton is one of the most important cash crops globally (CLCuD), particularly in the Indian subcontinent (Bird
and is widely referred to as "White Gold" due to its sig- Maramorosch, 1978; Berger, 1981; Campbell and Mad-
nificant economic value. In addition to its primary use den, 1990; Kapur et al., 1994; Van Maanen and Xu
as a source of fibre and lint for the textile industry, cot- 2003; Xu, 2006; Jamadar, et al., 2009; Kumar et.al.,
ton also provides seed oil and serves as a food source  2019; Sain et al., 2020; Monga and Sain, 2021)
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CLCuD is a devastating viral disease of cotton caused
by the Cotton Leaf Curl Virus (CLCuV) and is transmit-
ted by whiteflies (Bemisia tabaci) in a persistent and
circulative manner. The disease was first reported in
Nigeria in 1912 and has since become a significant
constraint to cotton production in South Asia.
Symptoms of the disease include upward or downward
curling of leaves, yellowing, stunted plant growth, vein
thickening, and leaf enation. The incidence and severity
of CLCuD are significantly influenced by climatic fac-
tors, including temperature, rainfall, and relative humidi-
ty. The disease is known to thrive under high tempera-
ture conditions (30—40°C), high humidity levels (above
70%), and moderate to heavy rainfall. These conditions,
especially prevalent during the monsoon season, create
a conducive environment for the spread and intensifica-
tion of the disease (Buttar and Singh, 2017; Chugh et
al., 2020; Kumar et al., 2019; Sain et al., 2024).

In the past, several statistical and epidemiological mod-
els have been developed to predict the incidence of
CottonLeaf Curl Disease (CLCuD) and its whitefly vec-
tor, based on climatic and ecological variables
(Fantaye, A.K., 2022; Sattar et al., 2017). Early predic-
tion of CLCuD is crucial for understanding disease dy-
namics, facilitating timely intervention, and ensuring
sustainable cotton production, which is vital to meet the
demands of a rapidly growing population.

In this context, the present study aimed to analyze the
progression behavior of CLCuD using nonlinear growth
models. The objective was to develop an early predic-
tion framework that supports effective disease manage-
ment strategies and helps minimize crop losses due to
this economically significant disease.

MATERIALS AND METHODS

A Cotton Leaf Curl Disease (CLCuD)-susceptible culti-
var, HS-6, was sown at a spacing of 67.5 x 30 cm in
the cotton research area of CCS HAU, Hisar. Observa-
tions on disease incidence, percent disease index
(PDI), and whitefly population were recorded at 7-day
intervals.CLCuD first appeared during the 22" to 23™
Standard Meteorological Week (SMW) and concluded
between the 40th and 44th SMW in different years. For
statistical analysis, data from the 24th to the 40th
Standard Meteorological Week (SMW) were consid-
ered, as presented in Table 1, following the methodolo-
gy based on the foundational principles outlined by
Vander Plank (1963). Disease progression was concep-
tualized as a dynamic interaction among host, patho-
gen, and environment, considering both monocyclic and
polycyclic epidemics. Disease intensity was quantified
using incidence, severity, and the area under the dis-
ease progress curve (AUDPC). To describe the tem-
poral development of the disease, three nonlinear mod-
els—monomolecular, logistic, and ompertz—were fitted

to the data. Comparative analyses were conducted to
evaluate the performance of each model using R? and
RMSE values. Overall, this approach follows Vander
Plank's emphasis on integrating quantitative disease
modeling with control strategies and aligns with modern
trends in statistical and machine learning-based dis-
ease forecasting A higher incidence and disease index
were recorded during periods of elevated temperatures
(approximately 33—39°C), accompanied by high relative
humidity (83-94%) and consistent rainfall, particularly
between the 28th and 36th SMWs.Data analysis was
conducted using Microsoft Excel and R software
(https://www.R-project.org). Since various environmen-
tal and biological factors influence plant disease epi-
demics, mathematical modelling was employed to un-
derstand the progression of the disease. These models
help simulate disease behaviour in response to exter-
nal variables, such as the presence of inoculums, host
susceptibility, and weather events, and assess the ef-
fectiveness of cultural and control measures.

For modelling disease progression, nonlinear mecha-
nistic growth models were employed due to their ability
to provide insights into the biological and epidemiologi-
cal processes governing disease spread. Unlike empiri-
cal models, mechanistic models provide a framework
for understanding the underlying dynamics of epidem-
ics and guiding effective disease management strate-
gies.

The growth models considered in this study included:

Monomolecular Model

This model is suitable for monocyclic epidemics, where
no secondary spread of disease occurs during a grow-
ing season (Forrest, 2007). It assumes that the rate of
disease increase is proportional to the remaining sus-
ceptible host tissue. The model is described by:

Y(t) = c—(c—b).eC%) 4 e(t)

Where:

Y(t): Disease intensity at time t,

c: Carrying capacity or maximum disease level,
b: Initial level of disease,

a: Rate of disease increase,

e(t): Random error term

(1)

Logistic Model

The logistic model is widely used for polycyclic diseas-
es (e.g.,CLCuD), where secondary infections occur
within a single growing season (Forrest, 2007). It is
particularly suitable for modeling epidemic development
in such cases.

The integrated form of the logistic model is given by:

Y(t) = ¢ + b.eC2D
(t) 5] € )

This model produces an S-shaped (sigmoid) curve that
is symmetric about the point of inflection, indicating
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balanced acceleration and deceleration in disease pro-
gression.

Gompertz Model

The Gompertz model is another nonlinear model suita-
ble for polycyclic diseases and is often used as an al-
ternative to the logistic model (Forrest, 2007). While it
also produces an S-shaped curve, the Gompertz curve
is asymmetric, with a faster initial increase in disease
and a gradual decline thereafter.

The model is particularly useful in biological applica-
tions due to its flexibility in capturing asymmetry in the
development of epidemics. Its absolute rate curve
reaches a maximum earlier than the logistic model and
then declines more slowly.

Before fitting the model, the normality assumption of
the data was tested using the Shapiro-Wilk test and
quantile-quantile (Q-Q) plots. Additionally, descriptive
statistics were calculated to analyze the behaviour of
the mean and variance over time

These models were employed to fit disease progres-
sion data for the years 2017 to 2022, using parameter
optimization via the Excel Solver, and were evaluated
using goodness-of-fit measures such as the Coefficient
of determination (R?) and root mean square error
(RMSE).

RESULTS AND DISCUSSION

The results of this study are divided into three sections,
viz. Normality testing and descriptive analysis of
data, correlation analysis with weather variables, Model
Fitting and Evaluation using Goodness-of-Fit criteria.

Normality testing and descriptive analysis of data
Based on the results of the Shapiro-Wilk test, there was
sufficient evidence to reject the null hypothesis (i.e.,
that the data follow a normal distribution), since the p-
value (< 0.0005) was less than the alpha level (0.05)
for all years. The Q-Q plots for the years 2017 to 2022
(Fig. 1) further confirmed that the data did not satisfy
the normality assumption.

The descriptive statistics presented in Table 2 indicate
that, for all years, the variance exceeded the mean,
which also suggests non-normality. Furthermore, when
the disease intensity of cotton leaf curl disease was
plotted against time (Fig. 2), the data followed an S-
curve, indicating a growth pattern.

As a result, it was concluded that the data are not nor-
mally distributed, making simple linear regression tech-
niques unsuitable for analyzing the relationship be-
tween disease intensity and time. Therefore, more ap-
propriate nonlinear growth models were considered.
The models fitted to the disease intensity data (for the
years 2017-2022) included the Monomolecular,
Logistic, Gompertz, and Negative Exponential growth
models.

Correlation analysis with weather variables
Table 3 shows that for the years 2017 to 2022, disease
severity had a positive and highly significant correlation
with relative humidity, with correlation coefficients of
0.59, 0.73, 0.74, 0.77, 0.80, and 0.70, respectively.
Conversely, a negative and highly significant correla-
tion was observed with maximum temperature, with
coefficients of -0.66, -0.61, -0.75, -0.79, and -0.62, ex-
cept for the year 2017, which showed a correlation of -
0.45.
Additionally, disease severity showed a negative, sig-
nificant correlation with wind speed for all years except
2020 and 2021. These relationships are visually repre-
sented in the correlation plot (Fig. 3), which was creat-
ed using R code, which is given below:
# R Code for Generating Multiple Correlation Plots
(Year-wise)
# Load the dataset
sevdata <- read.csv(file.choose(), header = TRUE)
View(sevdata)
# Set plotting layout
par(mfrow = ¢(3, 2)) # To plot six correlation matrices
in a 3x2 grid
# 2017 Data (Rows 1to 17)
d1 <- sevdata[1:17, ]
M1 <- cor(d1)
p.mat <- cor_pmat(d1)
corrplot(M1,

type = "upper”,

method = "square”,

addCoef.col = "black”,

tl.col = "black”

tl.srt = 45,

p.mat = p.mat)
# 2018 Data (Rows 18 to 34)
d2 <- sevdata[18:34, ]
M2 <- cor(d2)
p.mat <- cor_pmat(d2)
corrplot(M2,

type = "upper”,

method = "square”,

addCoef.col = "black”,

tl.col = "black”

tl.srt = 45,

p.mat = p.mat)
# 2019 Data (Rows 35 to 51)
d3 <- sevdata[35:51, ]
M3 <- cor(d3)
p.mat <- cor_pmat(d3)
corrplot(M3,

type = "upper”,

method = "square”,

addCoef.col = "black”,

tl.col = "black”,

tl.srt = 45,

p.mat = p.mat)
# 2020 Data (Rows 52 to 68)
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d4 <- sevdata[52:68, |
M4 <- cor(d4)
p.mat <- cor_pmat(d4)
corrplot(M4,
type = "upper”,
method = "square”,
addCoef.col = "black”,
tl.col = "black”,
tl.srt = 45,
p.-mat = p.mat)
# 2021 Data (Rows 69 to 85)
d5 <- sevdata[69:85, |
M5 <- cor(d5)
p.mat <- cor_pmat(d5)
corrplot(M5,
type = "upper”,
method = "square”,
addCoef.col = "black”,
tl.col = "black”,
tl.srt = 45,
p.mat = p.mat)
# 2022 Data (Rows 86 to 102)
d6 <- sevdata[86:102, ]
M6 <- cor(d6)
p.mat <- cor_pmat(d6)
corrplot(M6,
type = "upper”,
method = "square",
addCoef.col = "black",
tl.col = "black",
tl.srt = 45,
p.mat = p.mat)

Model fitting and evaluation using Goodness-of-Fit
Criteria

The parameter coefficients for the various fitted models
were computed using data from 2017 to 2022, as pre-
sented in Table 4. These parameter estimates were
obtained using the Solver tool in Microsoft Excel. To
evaluate the performance of each model, Two good-
ness of-fit metrics were used: the Coefficient of determi-
nation (R?) and the root mean square error (RMSE).
The R? values ranged from 0.98 to 0.99 across all
years, indicating an excellent fit of the models to the
data. The RMSE values were observed to range from
2.06 to 16.25, further supporting the reliability of the
models.

Among the models analyzed, the Logistic model con-
sistently outperformed others in the years 2017, 2019,
2020, and 2022, as it exhibited higher R* values and
lower RMSE compared to other models. This suggests
that 98% to 99% of the variation in disease intensity
could be explained by time, with minimal error during
these years. However, for the years 2018 and 2021, the
Gompertz model provided a better fit than the logistic
model, as indicated by superior goodness-of-fit statis-
tics.

The fitted values of the Logistic and Gompertz models
are visually presented in Fig. 4, and their numerical
values are provided in Table 5 for the respective years.
The findings of the present study on modeling Cotton
Leaf Curl Disease (CLCuD) using nonlinear growth
models like Logistic and Gompertz are well supported
by similar research endeavors in recent years. Notably,
Kumar et al. (2021) modelled powdery mildew in cotton
and reported that the disease progression over time

Table 1. Observed Cotton leaf curl disease (CLCuD (%) with standard meteorological week

S.No. Std Met. Week 2017 2018 2019 2020 2021 2022
1 24 22.30 0.66 5.66 0.33 0.00 9.40

2 25 42.30 1.00 9.00 10.00 4.33 18.50
3 26 71.30 6.66 9.66 17.67 5.66 25.30
4 27 85.30 9.33 22.00 28.67 7.66 28.50
5 28 89.33 21.00 32.66 47.00 18.33 32.25
6 29 96.70 36.00 49.00 66.6 67.33 58.5

7 30 99.00 51.60 61.00 75.33 72.00 67.33
8 31 99.00 69.66 75.33 96.33 91.00 70.50
9 32 100.00 70.00 82.66 96.66 96.00 75.25
10 33 100.00 75.66 94.33 98.00 97.00 76.75
11 34 100.00 78.00 94.33 98.00 97.00 78.25
12 35 100.00 78.33 94.66 98.00 97.00 79.25
13 36 100.00 80.00 95.66 98.00 97.00 80.50
14 37 100.00 82.67 96.66 98.00 97.00 82.25
15 38 100.00 92.00 96.66 98.00 97.00 83.75
16 39 100.00 95.33 97.00 98.00 97.00 84.20
17 40 100.00 95.33 97.00 98.00 97.00 85.00

Source: Experimental Data, Department of Pathology, CCS HAU, Hisar
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Table 2. Descriptive statistics of the Cotton leaf curl disease severity from 2017 to 2022 for the Hisar region in Haryana

Year Mean Variance
2017 80.21 1087.34
2018 51.96 1431.17
2019 71.49 1205.50
2020 70.93 1452.43
2021 66.62 1736.70
2022 58.04 921.88

Table 3. Correlation coefficient of Cotton leaf curl disease severity with weather variables from the years 2017 to 2022
for the Hisar region in Haryana

Year Tmax Tmin Rhm Rhe ws BS Total Rainfall
2017 -0.452 -0.008 0.594* 0.167 -0.510* 0.221 -0.493*

2018 -0.664** -0.666** 0.731* 0.261 -0.484* 0.285 -0.135

2019 -0.619* -0.050 0.748* 0.412 -0.485* -0.046 -0.379

2020 -0.75** -0.496* 0.776* 0.351 -0.465 -0.437 -0.116

2021 -0.791* -0.412 0.809** 0.752** -0.310 -0.604* 0.343

2022 -0.623** -0.348 0.702** 0.453 -0.626** 0.071 0.223

Tmax: Maximum Temperature, Tmin: Minimum Temperature, rhm: Relative Humidity Morning, Rhe: Relative humidity evening, WS;
Wind Speed; BS; Bright Sun shine; Rainfall

Table 4. Parametric Coefficient and goodness of fit criteria for the various fitted models for the years 2017 to 2022

Parameters Logistic Monomolecular Gompertz
2017
A 99.64 101.05 100.17
B 3.43 0.81 1.60
K 0.99 0.49 0.73
R? 0.99 0.97 0.96
MSE 2.06 6.09 2.09
2018
A 87.12 133.15 90.56
B 4430 1.08 713
K 0.67 0.09 0.41
R? 0.96 0.95 0.99
MSE 22.30 51.41 16.25
2019
A 97.55 122.83 99.73
B 24.25 1.06 5.50
K 0.62 0.13 0.41
R2 0.99 0.95 0.99
MSE 2.60 64.31 8.75
2020
A 98.90 109.87 100.17
B 25.88 1.10 5.68
K 0.79 0.20 0.53
R? 0.99 0.94 0.98
MSE 6.04 27.25 12.71
2021
A 99.60 117.08 97.06
B 563.64 1.16 74.62
K 1.33 0.16 0.99
R? 0.98 0.88 0.98
MSE 17.32 181.88 15.97
2022
A 83.30 95.04 85.89
B 8.04 0.96 2.57
K 0.53 0.16 0.34
R? 0.98 0.95 0.97
MSE 12.39 30.98 17.16
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Fig. 2. Disease Progress Curve of cotton leaf curve disease (%) for the year2017 to 2022

followed S-shaped curves, specifically the Logistic and
Gompertz models. Their interpretation highlighted that
such patterns emerge due to the biological interaction
between pathogen multiplication and host susceptibility
over time—a phenomenon also observed in the current
study. This reinforces the biological relevance and ap-
propriateness of selecting Logistic and Gompertz mod-
els for CLCuD data, as both diseases exhibit sigmoidal
progression due to infection dynamics.

Moreover, Sain et al. (2024) advanced the modelling

approach by applying machine learning tools to predict
CLCuD under varying ecological conditions. They split
the data into training and validation sets and compared
the performance of several ML models. The Best Sub-
set Feature (BSF) model emerged as the most accu-
rate with the highest R? value, indicating its strong pre-
dictive capacity, while the Artificial Neural Network
(ANN) model performed relatively poorly. This high-
lights a key distinction: while traditional growth models
(like those used in the current study) offer high inter-
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Table 5.0bserved and Predicted values for different best-fitted models

2017 2018 2019

Observed Logistic Observed Gompertz Observed Logistic
22.30 22.51 0.66 0.07 5.66 3.86
42.30 44.06 1.00 0.82 9.00 7.01
71.30 68.05 6.66 4.05 9.66 12.38
85.30 85.10 9.33 11.67 22.00 20.92
89.33 93.75 21.00 23.44 32.66 33.05
96.70 97.39 36.00 37.13 49.00 47.83
99.00 98.80 51.60 50.29 61.00 62.79
99.00 99.33 69.66 61.44 75.33 75.34
100.00 99.53 70.00 70.11 82.66 84.31
100.00 99.60 75.66 76.49 94.33 90.02
100.00 99.63 78.00 81.02 94.33 93.39
100.00 99.64 78.33 84.15 94.66 95.29
100.00 99.64 80.00 86.28 95.66 96.33
100.00 99.64 82.67 87.71 96.66 96.89
100.00 99.64 92.00 88.67 96.66 97.20
100.00 99.64 95.33 89.31 97.00 97.36
100.00 99.64 95.33 89.74 97.00 97.45
2020 2021 2022

Observed Logistic Observed Gompertz Observed Logistic
0.33 3.68 0.00 0.17 9.40 9.21
10.00 7.78 4.33 0.65 18.50 14.54
17.67 15.69 5.66 2.40 25.30 22.04
28.67 29.09 7.66 8.52 28.50 31.62
47.00 47.40 18.33 25.92 32.25 42.48
66.60 66.30 67.33 56.19 58.50 53.23
75.33 80.89 72.00 81.20 67.33 62.53
96.33 89.85 91.00 92.00 70.50 69.69
96.66 94.59 96.00 95.35 75.25 74.72
98.00 96.90 97.00 96.27 76.75 78.03
98.00 97.99 97.00 96.52 78.25 80.12
98.00 98.49 97.00 96.58 79.25 81.40
98.00 98.71 97.00 96.60 80.50 82.17
98.00 98.82 97.00 96.60 82.25 82.63
98.00 98.86 97.00 96.60 83.75 82.90
98.00 98.89 97.00 96.60 84.20 83.06
98.00 98.90 97.00 96.60 85.00 83.16

pretability and are suitable for modelling disease over
time with limited variables, ML models can harness
multidimensional data and offer enhanced prediction
under complex conditions, provided that careful feature
selection and validation are undertaken. Although the
present study did not use ML tools, its findings are con-
sistent with the temporal prediction aspect of Sain et
al's work and can serve as a foundational step for
more advanced modelling.

In parallel, Buttar and Pritpal Singh (2017) developed
an environment-based prediction model for CLCuVD by
incorporating four years of disease incidence data,
whitefly population data, and meteorological variables
in Punjab. Their model demonstrated moderate predic-
tive power, with R? values of 0.82 and 0.78, and a rea-
sonable match between the observed and predicted
slopes (5.85 and 6.68). Their findings underscore the
significance of environmental factors in disease devel-

opment and the practical utility of these models for dis-
ease forecasting and targeted pesticide application.
These insights align well with the correlation analysis
section of the current study, where relative humidity
and maximum temperature were found to have signifi-
cant relationships with disease severity. This not only
validates the inclusion of weather variables in predictive
modelling but also confirms the consistency of environ-
mental influences across geographies and study de-
signs.

Overall, the comparison underscores that while ma-
chine learning models like those in Sain et al.(2024)
provide sophisticated, high-dimensional predictions,
and environment-based models like Buttar and Singh
(2017) aid in practical decision-making, the current
study's nonlinear regression models offer a robust, in-
terpretable framework, particularly effective in charac-
terizing disease progression over time. Together, these

1260



Kumar, M. et al. / J. Appl. & Nat. Sci. 17(3), 1253 - 1261 (2025)

approaches form a complementary suite of tools for
understanding, predicting, and managing CLCuD, with
potential for integration in future studies for better deci-
sion support in disease surveillance and control strate-
gies.

Conclusion

The present study successfully validates the use of
nonlinear growth models over simple linear regression
for predicting CLCuD intensity. The Logistic and Gom-
pertz models emerged as the most reliable tools for
different years, showing superior statistical fit and align-
ment with the biological behaviour of diseases. These
findings are strongly supported and contextualized by
earlier research on CLCuD and similar plant disease
systems, emphasizing the need for weather-integrated,
growth-based modelling frameworks for effective dis-
ease forecasting and management. To address this,
various nonlinear growth models were fitted to the data.
Based on model performance, it was concluded that
the logistic growth model provided the best fit for the
years 2017, 2019, 2020, and 2022, whereas the Gom-
pertz model was found to be most appropriate for 2018
and 2021. Using the best-fitted models for each year,
disease predictions were computed to support early
detection and effective management of Cotton leaf curl
disease (CLCuD).
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