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INTRODUCTION  

 

Cotton is one of the most important cash crops globally 

and is widely referred to as "White Gold" due to its sig-

nificant economic value. In addition to its primary use 

as a source of fibre and lint for the textile industry, cot-

ton also provides seed oil and serves as a food source 

in various forms. However, the cultivation of cotton has 

been severely affected by Cotton Leaf Curl Disease 

(CLCuD), particularly in the Indian subcontinent (Bird 

Maramorosch, 1978; Berger, 1981; Campbell and Mad-

den, 1990; Kapur et al., 1994; Van Maanen and Xu 

2003; Xu, 2006; Jamadar, et al., 2009; Kumar et.al., 

2019; Sain et al., 2020; Monga and Sain, 2021) 
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CLCuD is a devastating viral disease of cotton caused 

by the Cotton Leaf Curl Virus (CLCuV) and is transmit-

ted by whiteflies (Bemisia tabaci) in a persistent and 

circulative manner. The disease was first reported in 

Nigeria in 1912 and has since become a significant 

constraint to cotton production in South Asia. 

Symptoms of the disease include upward or downward 

curling of leaves, yellowing, stunted plant growth, vein 

thickening, and leaf enation. The incidence and severity 

of CLCuD are significantly influenced by climatic fac-

tors, including temperature, rainfall, and relative humidi-

ty. The disease is known to thrive under high tempera-

ture conditions (30–40°C), high humidity levels (above 

70%), and moderate to heavy rainfall. These conditions, 

especially prevalent during the monsoon season, create 

a conducive environment for the spread and intensifica-

tion of the disease (Buttar and Singh, 2017; Chugh et 

al., 2020; Kumar et al., 2019; Sain et al., 2024). 

In the past, several statistical and epidemiological mod-

els have been developed to predict the incidence of 

CottonLeaf Curl Disease (CLCuD) and its whitefly vec-

tor, based on climatic and ecological variables 

(Fantaye, A.K., 2022; Sattar et al., 2017). Early predic-

tion of CLCuD is crucial for understanding disease dy-

namics, facilitating timely intervention, and ensuring 

sustainable cotton production, which is vital to meet the 

demands of a rapidly growing population. 

In this context, the present study aimed to analyze the 

progression behavior of CLCuD using nonlinear growth 

models. The objective was to develop an early predic-

tion framework that supports effective disease manage-

ment strategies and helps minimize crop losses due to 

this economically significant disease. 

 

MATERIALS AND METHODS 

 

A Cotton Leaf Curl Disease (CLCuD)-susceptible culti-

var, HS-6, was sown at a spacing of 67.5 × 30 cm in 

the cotton research area of CCS HAU, Hisar. Observa-

tions on disease incidence, percent disease index 

(PDI), and whitefly population were recorded at 7-day 

intervals.CLCuD first appeared during the 22nd to 23rd 

Standard Meteorological Week (SMW) and concluded 

between the 40th and 44th SMW in different years. For 

statistical analysis, data from the 24th to the 40th 

Standard Meteorological Week (SMW) were consid-

ered, as presented in Table 1, following the methodolo-

gy based on the foundational principles outlined by 

Vander Plank (1963). Disease progression was concep-

tualized as a dynamic interaction among host, patho-

gen, and environment, considering both monocyclic and 

polycyclic epidemics. Disease intensity was quantified 

using incidence, severity, and the area under the dis-

ease progress curve (AUDPC). To describe the tem-

poral development of the disease, three nonlinear mod-

els—monomolecular, logistic, and ompertz—were fitted 

to the data. Comparative analyses were conducted to 

evaluate the performance of each model using R² and 

RMSE values. Overall, this approach follows Vander 

Plank's emphasis on integrating quantitative disease 

modeling with control strategies and aligns with modern 

trends in statistical and machine learning-based dis-

ease forecasting A higher incidence and disease index 

were recorded during periods of elevated temperatures 

(approximately 33–39°C), accompanied by high relative 

humidity (83–94%) and consistent rainfall, particularly 

between the 28th and 36th SMWs.Data analysis was 

conducted using Microsoft Excel and R software 

(https://www.R-project.org). Since various environmen-

tal and biological factors influence plant disease epi-

demics, mathematical modelling was employed to un-

derstand the progression of the disease. These models 

help simulate disease behaviour in response to exter-

nal variables, such as the presence of inoculums, host 

susceptibility, and weather events, and assess the ef-

fectiveness of cultural and control measures. 

For modelling disease progression, nonlinear mecha-

nistic growth models were employed due to their ability 

to provide insights into the biological and epidemiologi-

cal processes governing disease spread. Unlike empiri-

cal models, mechanistic models provide a framework 

for understanding the underlying dynamics of epidem-

ics and guiding effective disease management strate-

gies. 

The growth models considered in this study included: 

 

Monomolecular Model 

This model is suitable for monocyclic epidemics, where 

no secondary spread of disease occurs during a grow-

ing season (Forrest, 2007). It assumes that the rate of 

disease increase is proportional to the remaining sus-

ceptible host tissue. The model is described by: 

  (1) 

Where: 

Y(t): Disease intensity at time t,   

c: Carrying capacity or maximum disease level,    

b: Initial level of disease,  

a: Rate of disease increase, 

e(t): Random error term 

 

Logistic Model 

The logistic model is widely used for polycyclic diseas-

es (e.g.,CLCuD), where secondary infections occur 

within a single growing season (Forrest, 2007). It is 

particularly suitable for modeling epidemic development 

in such cases. 

The integrated form of the logistic model is given by: 

   (2) 

This model produces an S-shaped (sigmoid) curve that 

is symmetric about the point of inflection, indicating 
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balanced acceleration and deceleration in disease pro-

gression. 

 

Gompertz Model 

The Gompertz model is another nonlinear model suita-

ble for polycyclic diseases and is often used as an al-

ternative to the logistic model (Forrest, 2007). While it 

also produces an S-shaped curve, the Gompertz curve 

is asymmetric, with a faster initial increase in disease 

and a gradual decline thereafter. 

The model is particularly useful in biological applica-

tions due to its flexibility in capturing asymmetry in the 

development of epidemics. Its absolute rate curve 

reaches a maximum earlier than the logistic model and 

then declines more slowly. 

Before fitting the model, the normality assumption of 

the data was tested using the Shapiro-Wilk test and 

quantile-quantile (Q-Q) plots. Additionally, descriptive 

statistics were calculated to analyze the behaviour of 

the mean and variance over time 

These models were employed to fit disease progres-

sion data for the years 2017 to 2022, using parameter 

optimization via the Excel Solver, and were evaluated 

using goodness-of-fit measures such as the Coefficient 

of determination (R²) and root mean square error 

(RMSE). 

 

RESULTS AND DISCUSSION 

 

The results of this study are divided into three sections, 

viz. Normality testing and descriptive analysis of  

data, correlation analysis with weather variables, Model 

Fitting and Evaluation using Goodness-of-Fit criteria. 

 

Normality testing and descriptive analysis of data 

Based on the results of the Shapiro-Wilk test, there was 

sufficient evidence to reject the null hypothesis (i.e., 

that the data follow a normal distribution), since the p-

value (< 0.0005) was less than the alpha level (0.05) 

for all years. The Q-Q plots for the years 2017 to 2022 

(Fig. 1) further confirmed that the data did not satisfy 

the normality assumption. 

The descriptive statistics presented in Table 2 indicate 

that, for all years, the variance exceeded the mean, 

which also suggests non-normality. Furthermore, when 

the disease intensity of cotton leaf curl disease was 

plotted against time (Fig. 2), the data followed an S-

curve, indicating a growth pattern. 

As a result, it was concluded that the data are not nor-

mally distributed, making simple linear regression tech-

niques unsuitable for analyzing the relationship be-

tween disease intensity and time. Therefore, more ap-

propriate nonlinear growth models were considered. 

The models fitted to the disease intensity data (for the 

years 2017-2022) included the Monomolecular,  

Logistic, Gompertz, and Negative Exponential growth 

models. 

Correlation analysis with weather variables 

Table 3 shows that for the years 2017 to 2022, disease 

severity had a positive and highly significant correlation 

with relative humidity, with correlation coefficients of 

0.59, 0.73, 0.74, 0.77, 0.80, and 0.70, respectively. 

Conversely, a negative and highly significant correla-

tion was observed with maximum temperature, with 

coefficients of -0.66, -0.61, -0.75, -0.79, and -0.62, ex-

cept for the year 2017, which showed a correlation of -

0.45. 

Additionally, disease severity showed a negative, sig-

nificant correlation with wind speed for all years except 

2020 and 2021. These relationships are visually repre-

sented in the correlation plot (Fig. 3), which was creat-

ed using R code, which is given below: 

# R Code for Generating Multiple Correlation Plots 

(Year-wise) 

# Load the dataset 

sevdata <- read.csv(file.choose(), header = TRUE) 

View(sevdata) 

# Set plotting layout 

par(mfrow = c(3, 2))  # To plot six correlation matrices 

in a 3x2 grid 

# 2017 Data (Rows 1 to 17) 

d1 <- sevdata[1:17, ] 

M1 <- cor(d1) 

p.mat <- cor_pmat(d1) 

corrplot(M1, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

         p.mat = p.mat) 

# 2018 Data (Rows 18 to 34) 

d2 <- sevdata[18:34, ] 

M2 <- cor(d2) 

p.mat <- cor_pmat(d2) 

corrplot(M2, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

         p.mat = p.mat) 

# 2019 Data (Rows 35 to 51) 

d3 <- sevdata[35:51, ] 

M3 <- cor(d3) 

p.mat <- cor_pmat(d3) 

corrplot(M3, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

         p.mat = p.mat) 

# 2020 Data (Rows 52 to 68) 
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d4 <- sevdata[52:68, ] 

M4 <- cor(d4) 

p.mat <- cor_pmat(d4) 

corrplot(M4, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

         p.mat = p.mat) 

# 2021 Data (Rows 69 to 85) 

d5 <- sevdata[69:85, ] 

M5 <- cor(d5) 

p.mat <- cor_pmat(d5) 

corrplot(M5, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

         p.mat = p.mat) 

# 2022 Data (Rows 86 to 102) 

d6 <- sevdata[86:102, ] 

M6 <- cor(d6) 

p.mat <- cor_pmat(d6) 

corrplot(M6, 

         type = "upper", 

         method = "square", 

         addCoef.col = "black", 

         tl.col = "black", 

         tl.srt = 45, 

  p.mat = p.mat) 

 

Model fitting and evaluation using Goodness-of-Fit 

Criteria 

The parameter coefficients for the various fitted models 

were computed using data from 2017 to 2022, as pre-

sented in Table 4. These parameter estimates were 

obtained using the Solver tool in Microsoft Excel. To 

evaluate the performance of each model, Two good-

ness of-fit metrics were used: the Coefficient of determi-

nation (R²) and the root mean square error (RMSE). 

The R² values ranged from 0.98 to 0.99 across all 

years, indicating an excellent fit of the models to the 

data. The RMSE values were observed to range from 

2.06 to 16.25, further supporting the reliability of the 

models. 

Among the models analyzed, the Logistic model con-

sistently outperformed others in the years 2017, 2019, 

2020, and 2022, as it exhibited higher R² values and 

lower RMSE compared to other models. This suggests 

that 98% to 99% of the variation in disease intensity 

could be explained by time, with minimal error during 

these years. However, for the years 2018 and 2021, the 

Gompertz model provided a better fit than the logistic 

model, as indicated by superior goodness-of-fit statis-

tics. 

The fitted values of the Logistic and Gompertz models 

are visually presented in Fig. 4, and their numerical 

values are provided in Table 5 for the respective years. 

The findings of the present study on modeling Cotton 

Leaf Curl Disease (CLCuD) using nonlinear growth 

models like Logistic and Gompertz are well supported 

by similar research endeavors in recent years. Notably, 

Kumar et al. (2021) modelled powdery mildew in cotton 

and reported that the disease progression over time 

S.No. Std Met. Week 2017 2018 2019 2020 2021 2022 

1 24 22.30 0.66 5.66 0.33 0.00 9.40 

2 25 42.30 1.00 9.00 10.00 4.33 18.50 

3 26 71.30 6.66 9.66 17.67 5.66 25.30 

4 27 85.30 9.33 22.00 28.67 7.66 28.50 

5 28 89.33 21.00 32.66 47.00 18.33 32.25 

6 29 96.70 36.00 49.00 66.6 67.33 58.5 

7 30 99.00 51.60 61.00 75.33 72.00 67.33 

8 31 99.00 69.66 75.33 96.33 91.00 70.50 

9 32 100.00 70.00 82.66 96.66 96.00 75.25 

10 33 100.00 75.66 94.33 98.00 97.00 76.75 

11 34 100.00 78.00 94.33 98.00 97.00 78.25 

12 35 100.00 78.33 94.66 98.00 97.00 79.25 

13 36 100.00 80.00 95.66 98.00 97.00 80.50 

14 37 100.00 82.67 96.66 98.00 97.00 82.25 

15 38 100.00 92.00 96.66 98.00 97.00 83.75 

16 39 100.00 95.33 97.00 98.00 97.00 84.20 

17 40 100.00 95.33 97.00 98.00 97.00 85.00 

Table 1. Observed Cotton leaf curl disease (CLCuD (%) with standard meteorological week  

Source: Experimental Data, Department of Pathology, CCS HAU, Hisar 
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Year Mean Variance 

2017 80.21 1087.34 

2018 51.96 1431.17 

2019 71.49 1205.50 

2020 70.93 1452.43 

2021 66.62 1736.70 

2022 58.04 921.88 

Table 2. Descriptive statistics of the Cotton leaf curl disease severity from 2017 to 2022 for the Hisar region in Haryana 

Year Tmax Tmin Rhm Rhe WS BS Total Rainfall 

2017 -0.452 -0.008 0.594* 0.167 -0.510* 0.221 -0.493* 

2018 -0.664** -0.666** 0.731** 0.261 -0.484* 0.285 -0.135 

2019 -0.619** -0.050 0.748** 0.412 -0.485* -0.046 -0.379 

2020 -0.75** -0.496* 0.776** 0.351 -0.465 -0.437 -0.116 

2021 -0.791** -0.412 0.809** 0.752** -0.310 -0.604* 0.343 

2022 -0.623** -0.348 0.702** 0.453 -0.626** 0.071 0.223 

Table 3. Correlation coefficient of Cotton leaf curl disease severity with weather variables from the years 2017 to 2022 

for the Hisar region in Haryana 

Tmax: Maximum Temperature, Tmin: Minimum Temperature, rhm: Relative Humidity Morning, Rhe: Relative humidity evening, WS; 

Wind Speed;  BS; Bright Sun shine; Rainfall 

Parameters Logistic Monomolecular Gompertz 

  2017 

A 99.64 101.05 100.17 
B 3.43 0.81 1.60 

K 0.99 0.49 0.73 
R2 0.99 0.97 0.96 
MSE 2.06 6.09 2.09 

  2018 

A 87.12 133.15 90.56 
B 44.30 1.08 7.13 
K 0.67 0.09 0.41 
R2 0.96 0.95 0.99 
MSE 22.30 51.41 16.25 

  2019 

A 97.55 122.83 99.73 
B 24.25 1.06 5.50 
K 0.62 0.13 0.41 
R2 0.99 0.95 0.99 
MSE 2.60 64.31 8.75 

  2020 

A 98.90 109.87 100.17 
B 25.88 1.10 5.68 
K 0.79 0.20 0.53 
R2 0.99 0.94 0.98 
MSE 6.04 27.25 12.71 

  2021 

A 99.60 117.08 97.06 
B 563.64 1.16 74.62 
K 1.33 0.16 0.99 
R2 0.98 0.88 0.98 
MSE 17.32 181.88 15.97 

  2022 

A 83.30 95.04 85.89 
B 8.04 0.96 2.57 
K 0.53 0.16 0.34 
R2 0.98 0.95 0.97 
MSE 12.39 30.98 17.16 

Table 4. Parametric Coefficient and goodness of fit criteria for the various fitted models for the years 2017 to 2022 
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followed S-shaped curves, specifically the Logistic and 

Gompertz models. Their interpretation highlighted that 

such patterns emerge due to the biological interaction 

between pathogen multiplication and host susceptibility 

over time—a phenomenon also observed in the current 

study. This reinforces the biological relevance and ap-

propriateness of selecting Logistic and Gompertz mod-

els for CLCuD data, as both diseases exhibit sigmoidal 

progression due to infection dynamics. 

Moreover, Sain et al. (2024) advanced the modelling 

approach by applying machine learning tools to predict 

CLCuD under varying ecological conditions. They split 

the data into training and validation sets and compared 

the performance of several ML models. The Best Sub-

set Feature (BSF) model emerged as the most accu-

rate with the highest R² value, indicating its strong pre-

dictive capacity, while the Artificial Neural Network 

(ANN) model performed relatively poorly. This high-

lights a key distinction: while traditional growth models 

(like those used in the current study) offer high inter-

Fig. 1. QQ plot of data for the years 2017 to 2022 

Fig. 2. Disease Progress Curve of cotton leaf curve disease (%) for the year2017 to 2022 
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Fig. 4. Fitting of observed and predicted values for the years 2017 to 2022 

Fig. 3. Correlogram of disease severity with weather variables for the years2017 to 2022 
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pretability and are suitable for modelling disease over 

time with limited variables, ML models can harness 

multidimensional data and offer enhanced prediction 

under complex conditions, provided that careful feature 

selection and validation are undertaken. Although the 

present study did not use ML tools, its findings are con-

sistent with the temporal prediction aspect of Sain et 

al.'s work and can serve as a foundational step for 

more advanced modelling. 

In parallel, Buttar and Pritpal Singh (2017) developed 

an environment-based prediction model for CLCuVD by 

incorporating four years of disease incidence data, 

whitefly population data, and meteorological variables 

in Punjab. Their model demonstrated moderate predic-

tive power, with R² values of 0.82 and 0.78, and a rea-

sonable match between the observed and predicted 

slopes (5.85 and 6.68). Their findings underscore the 

significance of environmental factors in disease devel-

opment and the practical utility of these models for dis-

ease forecasting and targeted pesticide application. 

These insights align well with the correlation analysis 

section of the current study, where relative humidity 

and maximum temperature were found to have signifi-

cant relationships with disease severity. This not only 

validates the inclusion of weather variables in predictive 

modelling but also confirms the consistency of environ-

mental influences across geographies and study de-

signs. 

Overall, the comparison underscores that while ma-

chine learning models like those in Sain et al.(2024)

provide sophisticated, high-dimensional predictions, 

and environment-based models like Buttar and Singh 

(2017) aid in practical decision-making, the current 

study's nonlinear regression models offer a robust, in-

terpretable framework, particularly effective in charac-

terizing disease progression over time. Together, these 

2017 2018 2019 

Observed Logistic Observed Gompertz Observed Logistic 

22.30 22.51 0.66 0.07 5.66 3.86 

42.30 44.06 1.00 0.82 9.00 7.01 

71.30 68.05 6.66 4.05 9.66 12.38 

85.30 85.10 9.33 11.67 22.00 20.92 

89.33 93.75 21.00 23.44 32.66 33.05 

96.70 97.39 36.00 37.13 49.00 47.83 

99.00 98.80 51.60 50.29 61.00 62.79 

99.00 99.33 69.66 61.44 75.33 75.34 

100.00 99.53 70.00 70.11 82.66 84.31 

100.00 99.60 75.66 76.49 94.33 90.02 

100.00 99.63 78.00 81.02 94.33 93.39 

100.00 99.64 78.33 84.15 94.66 95.29 

100.00 99.64 80.00 86.28 95.66 96.33 

100.00 99.64 82.67 87.71 96.66 96.89 

100.00 99.64 92.00 88.67 96.66 97.20 

100.00 99.64 95.33 89.31 97.00 97.36 

100.00 99.64 95.33 89.74 97.00 97.45 

2020 2021 2022 

Observed Logistic Observed Gompertz Observed Logistic 

0.33 3.68 0.00 0.17 9.40 9.21 

10.00 7.78 4.33 0.65 18.50 14.54 

17.67 15.69 5.66 2.40 25.30 22.04 

28.67 29.09 7.66 8.52 28.50 31.62 

47.00 47.40 18.33 25.92 32.25 42.48 

66.60 66.30 67.33 56.19 58.50 53.23 

75.33 80.89 72.00 81.20 67.33 62.53 

96.33 89.85 91.00 92.00 70.50 69.69 

96.66 94.59 96.00 95.35 75.25 74.72 

98.00 96.90 97.00 96.27 76.75 78.03 

98.00 97.99 97.00 96.52 78.25 80.12 

98.00 98.49 97.00 96.58 79.25 81.40 

98.00 98.71 97.00 96.60 80.50 82.17 

98.00 98.82 97.00 96.60 82.25 82.63 

98.00 98.86 97.00 96.60 83.75 82.90 

98.00 98.89 97.00 96.60 84.20 83.06 

98.00 98.90 97.00 96.60 85.00 83.16 

Table  5.Observed and Predicted values for different best-fitted models 
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approaches form a complementary suite of tools for 

understanding, predicting, and managing CLCuD, with 

potential for integration in future studies for better deci-

sion support in disease surveillance and control strate-

gies. 

 

Conclusion 

 

 The present study successfully validates the use of 

nonlinear growth models over simple linear regression 

for predicting CLCuD intensity. The Logistic and Gom-

pertz models emerged as the most reliable tools for 

different years, showing superior statistical fit and align-

ment with the biological behaviour of diseases. These 

findings are strongly supported and contextualized by 

earlier research on CLCuD and similar plant disease 

systems, emphasizing the need for weather-integrated, 

growth-based modelling frameworks for effective dis-

ease forecasting and management. To address this, 

various nonlinear growth models were fitted to the data. 

Based on model performance, it was concluded that 

the logistic growth model provided the best fit for the 

years 2017, 2019, 2020, and 2022, whereas the Gom-

pertz model was found to be most appropriate for 2018 

and 2021. Using the best-fitted models for each year, 

disease predictions were computed to support early 

detection and effective management of Cotton leaf curl 

disease (CLCuD). 
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