

Journal of Applied and Natural Science

17(3), 1409 - 1419 (2025)

ISSN: 0974-9411 (Print), 2231-5209 (Online)

journals.ansfoundation.org

Review Article

Recent advances in insect pest management strategies emphasizing on Artificial intelligence: A overview

Sheikh Fiza

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara (Punjab), India

Suzain Shafi

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara (Punjab), India

Renita Pradhan

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara(Punjab), India

Amaninder Kaur Riat*

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara(Punjab), India

*Corresponding author: E-mail: amaninder.21097@lpu.co.in

Article Info

https://doi.org/10.31018/ jans.v17i3.6710

Received: April 04, 2025 Revised: September 05, 2025 Accepted: September 13, 2025

How to Cite

Fiza, S. et al. (2025). Recent advances in insect pest management strategies emphasizing on Artificial intelligence: A overview. Journal of Applied and Natural Science, 17(3), 1409 - 1419. https://doi.org/10.31018/jans.v17i3.6710

Abstract

Insect pests pose a serious threat to agricultural production and food security, accounting for 30–40% of yearly crop losses worldwide. Conventional pest control techniques are often labour-intensive, ineffective, and unable to adapt to the changing habits of pests. By enhancing pest identification, classification, and management through the application of sophisticated algorithms, sensor technologies, and predictive modelling, Artificial intelligence (AI) provides a game-changing solution. Al-powered methods minimize financial losses and promote sustainable agriculture by enabling early pest detection, reducing pesticide overuse, and facilitating data-driven decision-making. This paper provides a comprehensive examination of AI and smart sensor applications in pest management, highlighting their contributions to crop monitoring, environmental assessment, and resource efficiency. Weather monitoring systems, crop health sensors, automatic irrigation controllers, and soil sensors are some of the key technologies covered. Furthermore, the potential of innovations such as sensor fusion, hyperspectral imaging, and drone-based sensing to enhance real-time agricultural data collection and decision-making is investigated. It also examines how the Internet of Things (IoT) and AI-driven analytics might be integrated into precision agriculture to maximize pest control, fertilization, and irrigation. AI and smart sensors support sustainable pest management and robust agricultural ecosystems by facilitating effective resource use and reducing environmental impact. This review emphasizes how important AI and smart sensor technologies are to improving precision farming and bolstering global food security.

Keywords: Artificial Intelligence (AI), Integrated pest management, Nanopesticide, Weak AI precision farming

INTRODUCTION

Integrated pest management (IPM), is a comprehensive strategy that guarantees efficient, ecologically friendly, and socially conscious pest control. Food production is improved, farmer revenues are increased, and the ecological effect is reduced. Limited farmer involvement and knowledge of IPM principles, however, continue to be problems. The impact of global trade, consumer demands for sustainable food, and technological advancements are all incorporated into a mod-

ernized IPM model to address these gaps (Angon *et al.*, 2023). Identification of pest control options, utilization of resources and expertise, facilitation of datadriven decision-making, and promotion of broad adoption through outreach are important elements. This strategy promotes a sustainable food system by striking a balance between environmental, social, and economic concerns. Agriculture can become more sustainable, raise farmer incomes, and increase global food security by rearranging IPM (Rossi *et al.*, 2023; Deguine *et al.*, 2021).

Use of nanopesticides in integrated pest management

In comparison with traditional pesticide formulations, nanopesticides may offer several benefits, including enhanced effectiveness, reduced environmental impact, and targeted delivery to specific pests or plant tissues (Scheff et al., 2022). For instance, the stability, solubility, and controlled release of pesticide active components can be enhanced by nanoencapsulation, which reduces the quantity of pesticide required and minimizes off-target effects (Kumar et al., 2019) Moreover, pesticides can be more effectively and locally controlled by using nanoformulations to improve their translocation and penetration into plant tissues (Wang et al., 2022; Arcot, et al., 2024). Innovative pest management options are provided by nanopesticides, which combine nanomaterials such as silica, titanium dioxide, lipidbased carriers, and polymeric nanoparticles. The use of pesticides has decreased significantly, and pest management has improved thanks to Integrated Pest Management (IPM) techniques, which include the use of resistant cultivars, such as Bt cotton. Insect resistance concerns, however, emphasize the necessity of effective resistance control. To guarantee that pest management methods are economical and avoid overusing pesticides while preserving crop health and sustainability, IPM frameworks rely on Action Thresholds (ATs) and Economic Injury Levels (EILs) (Lang et al., 2021; Campos et al., 2023; Bueno et al., 2022).

Monitoring and decision making

Techniques for scouting and sampling are essential components of IPM programs' monitoring and decision-making processes (Hong *et al.*, 2021; Wang *et al.*, 2023). In addition to these sampling approaches, several instruments and methods are used to track pest populations and the damage they cause to crop plants. These methods include visual inspection, the use of sweep nets, sticky traps, pheromone traps, and remote sensing technologies (Pinto *et al.*, 2023; Singh *et al.*, 2023).

Unmanned aerial vehicles (UAVs), satellite imaging, and aerial photography are examples of remote sensing techniques that are being utilized more and more to track crop health and identify insect outbreaks on a wide geographic scale (Hadi *et al.*, 2021; Rydhmer *et al.*, 2022; Olson *et al.*, 2021).

IPM practitioners are empowered to make data-driven decisions about the necessity and timing of pest control actions by integrating various monitoring tools and methodologies with suitable sampling designs. IPM has recently leveraged the development of artificial intelligence (AI) for identification and decision-making. According to Batz et al., AI can enhance aphid pest forecasting in several ways. 1) optimal insect identification using image recognition and deep learning, 2) forecast-

ing model based on neural networks and machine learning, and 3) monitoring infrastructure optimization to enhance predictive models (Hunter III *et al.*, 2020). In IPM decision-making, action thresholds (ATs) and economic injury levels (EILs) are crucial instruments (Hafeez *et al.*, 2023; Batz *et al.*, 2023; da Silva *et al.*, 2021). When pest control procedures are economically justified, they help farmers and pest management experts make that determination. ATs are set at a lower pest density to keep populations from reaching the EIL, whereas EILs reflect the pest population density at which the cost of crop damage equals the cost of management (Cárcamo *et al.*, 2024; Penca *et al.*, 2020; da Silva *et al.*, 2021).

One of the main causes of agricultural harm worldwide is recognized to be insect pests. Agricultural losses can be reduced by managing and preventing insect pests (Cárcamo et al., 2024). This activity requires accurate detection and classification of insect pests to distinguish between species, estimate the quantity of pest management equipment needed, and identify the various host species (Penca et al., 2020). Interest in automatic insect pest recognition has grown recently since this activity requires costly, continuous monitoring. The traditional approach to insect pest monitoring relies on subject matter specialists to manually identify, which is labour-intensive, prone to error, and applicable to a wider range of applications (Ahmed et al., 2018; Oliveira et al., 2014; Ding et al., 2016). Additionally, the careless use of pesticides frequently has the unintended consequence of harming ecosystems and beneficial organisms. Al offers a revolutionary solution to these problems, enabling the implementation of targeted treatments that maximize effectiveness while minimizing ecological impacts (Li et al., 2021; Sun et al., 2018; Sharma et al., 2020). A new approach to automatic pest detection and monitoring in contemporary agriculture is provided by implementing Al through computer vision that is integrated with cameras and internet connections. This significantly enhances the effectiveness of insect surveillance in agricultural systems (Preti et al., 2021).

Artificial Intelligence (AI) powered pest management: Revolutionizing forestry and agriculture

The field of pest management in forestry and agriculture has become a promising area for the successful application of AI technology, providing innovative solutions that are more accurate, efficient, and environmentally friendly (Streich *et al.*, 2020). AI-related theories and technologies, such as Smart Pest Monitoring (SPM), have emerged as a new scientific area within Integrated Pest Management (IPM) due to the rapid advancement of Artificial intelligence in research (Partel *et al.*, 2019). By combining artificial crops intelligence (AI), the Internet of Things (IoT), big data, and other

modern information technologies and tools, the SPM seeks to improve the ability of pest monitoring and early warning while also advancing the autonomous and intelligent data gathering of important insect pests (Li et al., 2021). The decision-making process regarding management actions, such as pesticide spraying and other procedures, is aided by the identification and detection of insects to count and analyze their density using relevant theories (Iqbal et al., 2018). Machine learning, computer vision, and data analytics are just a few of the many techniques that comprise artificial intelligence (AI), enabling the analysis of large, complex datasets. By improving precision and forecasting accuracy, this capacity offers a previously unheard-of benefit in addressing pest-related difficulties (Patrício et al., 2018). Artificial intelligence and pest management, when combined, have the potential to minimize ecological impact, optimize resource use, and reduce dependency on chemical treatments (Doe et al., 2023). Artificial intelligence in pest management has a promising future, but several obstacles remain to be overcome, including concerns about data privacy, legal compliance, and the need for multidisciplinary cooperation among disciplines such as computer science, ecology, and agronomy (Hanif et al., 2022).

To ensure broad benefits across various agricultural landscapes, it is also crucial to verify fair access to Artificial intelligence technology for small-scale farmers and areas with limited resources (Uzhinskiy et al., 2023). The application of Artificial intelligence has great promise for transforming the control of insect pests in horticulture, forestry, and agriculture. Stakeholders can successfully mitigate pest risks, enhance productivity, and promote environmental sustainability in food and fibre production systems by leveraging Al-driven insights and solutions (Pandey et al., 2024). The security of global food systems can be ensured while reducing their ecological footprint by utilizing AI to transform pest control from a reactive to a proactive and intelligent approach (Kanwal et al., 2022). This review examines the various facets of Al's role in pest management. Through an analysis of technical developments, this investigation examines the benefits and limitations of Al, as well as how Al-driven systems support sustainable agricultural practices, early pest identification, and informed decision-making.

Artificial intelligence in modern agriculture: Enhancing sustainability and productivity

The foundation of human civilization, agriculture has provided food, raw materials, and employment. However, it faces numerous challenges today, including resource management, pest infestations, climate change, and soil degradation. Artificial Intelligence (AI) has emerged as a transformative force in agriculture, helping farmers increase sustainability, reduce costs, and

optimize productivity. Artificial Intelligence is categorized using various methods, including functionality, learning methodology, and application domain. First, the Artificial intelligence was separated into two main divisions according to its functionality: narrow AI (weak AI), which handles one or a small number of tasks. It lacks overall intelligence, despite being quite good at what it does. Virtual assistants, picture recognition systems, and recommendation algorithms are a few examples. Weak AI is frequently utilized in modern farming to perform specialized tasks, including yield prediction, insect control, and crop monitoring. Sensors, big data analytics, and machine learning algorithms are the foundation of its operation (Zhang et al., 2018).

Weak Artificial intelligence (Weak Al or Narrow Al) in agriculture

Agriculture is one of the most critical sectors for ensuring food security and economic stability worldwide. Farmers, however, face various challenges, including climate change, soil erosion, water shortages, and unstable market demands (Wolfert et al., 2017). Al, specifically Weak AI, has become a revolutionary force, streamlining farming operations through data-driven insights and automation. The use of Artificial Intelligence (AI) in contemporary agriculture has led to significant improvements in efficiency, precision, and sustainability. Weak AI (Narrow AI), created for a single purpose, has been instrumental in automation, predictive analysis, and real-time decision-making in agriculture. This report examines the applications, benefits, and drawbacks of Weak AI in agriculture, supported by empirical examples and scholarly research.

Weak AI systems are tailored to particular tasks, including:

Precision farming (soil health and crop monitoring)

To enhance maximum soil health and crop observation for increased agricultural performance, precision farming makes use of advanced technologies such as remote sensing, GPS mapping, Internet of Things (IoT) sensors, and artificial intelligence (Patel et al., 2025). Using soil sensors to gauge critical properties such as moisture levels, pH levels, and nutrient levels in realtime, farmers can effectively control fertilizer and irrigation (Bandgar & Biradar, 2024). Drone and satellite imagery high-resolution data deliver crop health information that can detect stressors like pest attack, nutrient deficiencies, and water stress before they intensify (Gupta et al., 2025). Based on the analysis of such data, machine learning models deliver forecasted information that supports targeted interventions that have reduced environmental footprints, higher yields, and less waste (Bassine et al., 2023). Aside from boosting productivity, this data-driven approach encourages sustainable agriculture through resource conservation and reducing excessive chemical use, ensuring longterm ecosystem and soil fertility stability in the end.

Pest and disease identification (image recognition and predictive analytics)

A novel technique for detecting pests and diseases using machine learning, computer vision, and artificial intelligence (AI) to detect and manage agricultural threats is image recognition and predictive analytics (Zhao et al., 2024). Through deep learning models, including convolutional neural networks (CNNs), image recognition technology examines crop images and employs morphological characteristics, color variations, and visual patterns to detect pests or diseases (Brahimi et al., 2023). For improved accuracy and adaptability across numerous plant species and weather conditions, such systems are often taught big datasets that have thousands of labeled images (Ferentinos, 2018). Predictive analytics, by contrast, applies real-time sensor readings, past data, and weather patterns to predict the probability of disease occurrence or insect infestations (Kamilaris & Prenafeta-Boldú, 2018). When combined, both technologies enable early warnings to farmers and agricultural experts, allowing them to adopt preventive measures like crop rotation, precision pesticide application, or biological pest control. This combination conserves loss of crops, decreases the use of chemicals, and promotes sustainable agriculture practices, in addition to enhancing precision in pest and disease control. To smallholder farmers and large agribusinesses, this technology is accessible and scalable because of realtime monitoring facilitated by mobile apps and drone surveillance systems with Al-based recognition platforms. Accuracy, efficiency, and integration of the identification of pests and diseases with intelligent farming ecosystems will all grow in the future as the study of Al models and data collection continues.

Intelligent irrigation (Efficiency in using water)

By merging intelligent technology such as artificial intelligence (AI), data analysis, and the Internet of Things (IoT), smart irrigation is an innovative approach that optimizes water utilization in agriculture (Niu et al., 2023). Because of overuse, inefficient dispensation, and insufficient real-time tracking, conventional irrigation methods are prone to wastage of water. These problems are fixed by smart irrigation systems, which employ remote sensing, weather forecasting, and soil moisture sensors to accurately calculate the right quantity of water crops need at any time (Adeyemi et al., 2024). In order to automate watering schedules and have water supplied efficiently and only when required, Al-based algorithms interpret real-time data about the soil, water needs of plants, and climatic conditions (Raza et al., 2023). Additionally, monitoring through drones and satellite images are able to analyze plant health by determining the levels of stress that point towards excessive moisture or deficiency of water (Patel et al., 2025). Smart irrigation optimizes crop yields in agriculture, minimizes erosion of the soil, and saves energy for pumping and distribution, while also saving a precious resource by reducing water wastage and optimizing distribution. Applying intelligent irrigation systems is increasingly vital for sustainable and resilient agriculture as worries about water shortage and climate change grow.

Market forecasting (examining market trends for more informed pricing)

Producers, suppliers, and farmers can make informed production and price decisions using market forecasting, an important agriculture tool that uses data analytics, machine learning, and economic models to forecast market trends (Zhang et al., 2024). Market forecasting assists in anticipating future price movements by studying historic price information, supply and demand fluctuations, shopper behavior, and extrinsic conditions like weather conditions, trade policies, and international commodity trends (Nair & Jain, 2023). In order to analyze enormous amounts of real-time data and find patterns and relationships not discernible using traditional analysis, sophisticated prediction models use artificial intelligence (AI) and big data analytics (Li et al., 2024). In addition, satellite imagery and remote sensing have the capability to offer current data regarding crop health globally, helping in predicting supply shortages or surpluses that affect market prices (Karthikeyan et al., 2023). Through facilitation of strategic thinking for trade regulations and food safety, market forecasting also benefits policymakers. Farmers and agribusinesses can assist in developing a more stable and efficient agricultural market, reduce financial risks, and boost profitability by leveraging technology-based forecasting methods.

Although General AI (Strong AI) is still in its theoretical phases, Weak AI is already extensively used in actual agricultural practices (Kamilaris & Prenafeta-Boldu, 2018).

Artificial intelligence's revolutionary effect on modern agriculture

Artificial intelligence (AI) is transforming contemporary agriculture (Liakos et al., 2018; Sharma, 2023). Narrow AI already enhances agriculture using predictive modeling, automation, and real-time analysis (Kamilaris & Prenafeta-Boldú, 2018). AI-driven hardware that maximizes irrigation, planting, and crop tracking technologies includes drones, satellites, IoT sensors, and smart tractors from John Deere (Patel et al., 2025). Whereas intelligent irrigation systems such as NetBeat enhance water efficiency through integrating soil and weather information, AI-based pest and disease management

Table 1. Artificial intelligence (AI) based strategies for insect pest management

Al-Based Strategy	Mechanism Of Action	Applications	Core Bene- fits	Examples of Al- Powered Tools	Target Insect Pest(s)	Support- ing Refer- ences
Smart Sen- sor networks	In addition to monitoring temperature and humidity, IoTenabled sensors use motion, sound, and pheromone-based traps to identify insect activity.	Pest population tracking, ongoing field surveillance, and automated alerts for early pest identification	Reduced pesticide use, real-time monitoring, early identification, and cheaper expenses.	Semios (pheromone sensors powered by AI)	Corn borers, fruit flies, and codling moths.	Eze et al., 2025
Automated Drones using Al and Com- puter Vision	Drones and cameras using artificial intelligence (AI) take pictures of crops, then use image recognition to determine the extent of damage and detect the presence	Early-stage detection, mapping of affected areas, and extensive pest identifica- tion	Minimal crop damage, pre- cision pest management, and de- creased reli- ance on man- power	Precision Hawk (pest monitoring via drone)	Grasshoppers , armyworms, and locusts.	Bai et al., 2023
Al-Powered Automated Pest Traps	of pests. Smart traps using cameras, sensors, and artificial intelligence (AI) algorithms automatically provide data while identifying and classifying pests they have trapped	Analysis of population density, intelligent pest management, and non-chemical pest control.	Eco-friendly approach, reduced reliance on pesticides, realtime pest population monitoring.	Trapview (AI-powered automated pest trap)	Stink bugs, beetles, and fruit flies.	Hinojosa- Dávalos et al., 2025
Big Data & Cloud Com- puting	Al provides insights into pest manage- ment by integrating data from several sources, including field sensors, satellite	Al-assisted pest management suggestions and remote pest monitoring.	Enhanced resource effi- ciency, data- driven deci- sion-making, and real-time risk assess-	Climate Corporation (AI-powered disease and pest predic- tion)	Cutworms, Weevils, and Thrips.	Dawn et al., 2025
Decision Support Sys- tems with Al Integration (DSS)	Al-powered systems examine pest patterns and recommend the best use of pesticides, biological control techniques, and other forms of intervention.	Action plans, pest alarms, and smart agricultural dashboards via mobile apps.	ment Lower envi- ronmental impact, more economical farming, bet- ter decision- making, and higher agri- cultural out-	Plantix (a pest detect- ing mobile app)	Leaf miners, spider mites, and caterpillars	Marinko et al., 2024
Pest- Resistant Genetic AI Models	Al analyzes plant DNA responses to pest invasions, which helps with genetic engineering research to create crop varie- ties resistant to pests.	Creation of crops resistant to pests and environmental friendly pest management techniques.	put. Long-term insect re- sistance, decreased reliance on chemicals, and improved crop resili- ence.	The genetically modified pest- resistant crop known as BASF's InVigor Canola	Stem bor- ers, and root	(Ma et al., 2025

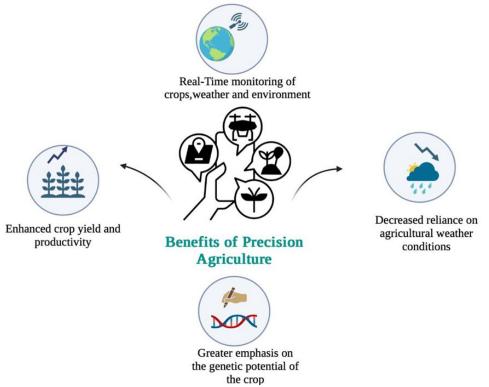


Fig. 1. Precision agriculture enhancing efficiency

technologies such as Plantix facilitate early diagnosis of problems. Al-based market forecasting strengthens price forecasts and supply chain management (Zhang et al., 2024). General Al can potentially develop improved climate adaption strategies, enhance autonomous farming, and aid decision-makers in ensuring the sustainability and security of food in the future. Al can also result in virtual agronomists for on-the-spot farming guidance and genetic engineering advancements such as CRISPR-based crop modification. Al in agriculture also has tremendous potential for enhancing resilience, sustainability, and efficiency in the future but ensuring its benefits widely reach will need to address cost, accessibility, and ethics concerns.

Using Precision technology to address global agricultural challenges: Smart farming for a growing world

A revolutionary approach to contemporary agriculture, precision ag. riculture—also referred to as smart farming or precision farming—has arisen to solve the urgent global issues of resource efficiency, environmental sustainability, and food security. Precision agriculture allows farmers to precisely customize inputs and interventions to meet the demands of individual plants or fields by integrating smart sensors to monitor and evaluate particular characteristics of crops, soil, and environmental conditions. Precision farming has several potential advantages. Initially, it promises to drastically boost crop yields and overall production while cutting down on resource waste (Akaka *et al.*, 2023). In addi-

tion, precision agriculture promotes sustainable and ethical agricultural methods by reducing environmental effects and maximizing resource utilization (Zaman and Q. U., 2023). Moreover, resilience to climatic variability is improved by anticipating and adapting to changing environmental conditions, which increases the sector's capacity to endure the difficulties brought on by global climate change.

Role of Smart sensor technologies in advancing modern agriculture

In a bid to change the way food is produced and cope with numerous challenges in the agricultural sector today, smart sensor technologies need to be embraced in modern agriculture (Shanmugasundaram et al., 2023). These advanced sensors, with their modern capabilities and connectivity with cutting-edge technology, offer many benefits that underpin stronger, more efficient, practices and sustainable farming (Shanmugasundaram et al., 2023). Smart sensors provide precision, real-time information on key areas like crop well-being, nutrient status, soil water, and environmental factors (Malik et al., 2020). It state that the presence of such precise and timely information allows farmers to design their practices exactly according to crop needs and make efficient decisions. Through precision agriculture practices — where each area of the field is managed based on its own requirements — farmers can optimize the use of resources, minimize waste, and boost total output (Malik et al., 2020).

Enhancing Agricultural sustainability and climate resilience through Smart sensor technologies

This minimizes wastage and ensures that inputs are used where and when they are most required by facilitating targeted use of water, fertilizers, and pesticides (Suman et al., 2023). With the world's growing population and limited natural resources, efficiency in using resources is paramount. Through the provision of precise scheduling of irrigation, better application of nutrients, and tracking of environment conditions to prevent wasteful practices, smart sensors play a crucial role in improving resource efficiency (Aarif et al., 2025). Enabling environmentally sound and sustainable agriculture by conserving energy, water, and fertilizer, smart sensor technologies are promoted (Aarif et al., 2025). Early indication of diseases, pests, and stressors can be identified with the help of smart sensors in crop health monitoring, allowing prompt action. Rapid detection and response to potential threats minimize yield losses and prevent disease spread, reducing dependence on chemical application while promoting overall crop health (Mukherjee et al., 2024). Smart sensors also enable the development of climate resilience as climate change keeps impacting agricultural productivity. Farmers are able to adjust their practice in accordance with changing climatic patterns by tracking weather, soil water holding capacity, and other climatic conditions (Aarif et al., 2025).

Leveraging Smart sensor technologies for sustainable agriculture and global food security

This flexibility ensures consistency in agricultural production and enhances the sector's resistance to extreme weather conditions (Chen et al., 2023). Intelligent sensors produce voluminous amounts of data which, when combined with data analytics and artificial intelligence, offer actionable insights into farm management and crop yields optimization (Chaudhary & Singh, 2025). The analytics allow for trend analysis, predictive modeling, and customized recommendations to boost agriculture practice and profitability (Ali et al., 2025) The development of sensor technology has brought about cost-effective and accessible solutions that are within the reach of smallholder farmers, giving them access to innovative farming methods. Encouraging efficient resource use, smart sensors aid in supporting sustainability by minimizing chemical use, conserving water, and healthier soils (Liu et al., 2025). In addition, smart sensors provide for the early detection of pests and diseases by providing real-time crop health information, allowing instant intervention and minimized use of chemical controls (Mansoor et al., 2025). In a world with food security and environmental threats, integrating smart sensor technology in contemporary agriculture is critical to improving productivity, sustainability, and resilience.

Future perspectives

Al-based pest control is shifting towards edge Al systems integrated within traps, UAVs, and farm gateways to facilitate real-time decision-making without full dependence on cloud computing. Initial tests pairing IoT sensors with embedded Al chips have shown fast pest detection and intervention functions (Al-Haddad *et al.*, 2025). At the same time, intelligent pheromone traps and UAV-assisted monitoring pipelines are enhancing the accuracy of small-insect recognition, making timely and targeted pest management possible with minimal pesticide application (Zhang *et al.*, 2025; Li *et al.*, 2025).

A further developing field is the application of digital twins to crop–pest ecosystems—virtual representations that combine real-time sensor streams and predictive models to model management options prior to application in the field (Gutiérrez *et al.*, 2024; Zhai *et al.*, 2023). Such systems will allow for optimization of intervention timing, resource deployment, and cost–benefit planning (Rahman *et al.*, 2024).

Scaling these technologies, however, involves overcoming challenges like dataset imbalance, regional variability, data governance, and farmer adoption (Kour et al., 2025). Solutions lie in federated learning to enable updates on AI models without raw data transfer, explainable AI to foster trust, and human-in-the-loop systems that integrate AI analytics with human expertise (Kour et al., 2025; Khan et al., 2025). Combined, these advances in edge AI, intelligent monitoring devices, and digital twin technology hold the potential for more sustainable, efficient, and responsive pest management in the future.

Conclusion

By limiting crop damage, decreasing the environmental impact, and optimizing pesticide usage, Al-driven pest management enhances efficiency. Precision farming, which increases production and sustainability, is made possible by smart sensors and predictive analytics. Food security and resource optimization rely on AI advancements, despite ongoing issues such as cost and accessibility. Al will propel global agriculture toward a more sustainable and effective future as technology develops. This review highlights the importance of smart sensors in enhancing agricultural sustainability, improving production, and optimising resources. Their combination of IoT, AI, and data analytics provides creative answers to problems related to environmental preservation and food security. The key to guaranteeing broad adoption will be removing implementation obstacles via cooperation and information sharing. Smart sensors will continue to revolutionise contemporary farming as technology advances, facilitating precision farming and enabling the development of robust,

sustainable food production systems. The combination of smart sensor technologies, IoT, AI, and data analytics has tremendous potential to improve food security and environmental sustainability. Widespread acceptance depends on overcoming implementation obstacles via cooperation and knowledge exchange. Through the use of real-time data and sophisticated analytics, farmers can enhance yields, optimise resource management, and implement more sustainable farming practices. Future prospects for precision farming are enormous, as it promotes increased production, enhanced efficiency, and improved resilience. As technology advances, smart sensors will be crucial in developing farming systems that are both flexible and sustainable, thereby meeting the demands of a changing environment and an expanding global population.

Conflict of interests

The authors declare that they have no conflict of interest.

REFERENCES

- Aarif, M., Anwar, S., Kumar, P., Singh, V., Khan, M. F., & Singh, R. (2025). Smart sensor technologies shaping the future of precision agriculture: Recent advances and future outlooks. Wireless Communications and Mobile Computing, 2025, 1–16. https://doi.org/10.1155/2025/6632234
- Adeyemi, O., Dursun, E., Scholz, M., & Shah, S. H. H. (2024). Advances in intelligent irrigation systems for sustainable agriculture. *Agricultural Water Management*, 288, 108555. https://doi.org/10.1016/j.agwat.2024.108555
- Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for smart precision agriculture and farming in rural areas. *IEEE internet of things journal*, 5(6), 4890-4899. https://doi.org/10.1109/JIOT.2018.2879579
- Akaka, J., García-Gallego, A., Georgantzis, N., Rahn, C., & Tisserand, J. C. (2023). Development and Adoption of Model-Based Practices in Precision Agriculture. In Precision Agriculture: Modelling (pp. 75-102). Cham: Springer International Publishing. DOI https:// doi.org/10.1007/978-3-031-15258-0 4
- Al-Haddad, M., AbdulRazzaq, S., Hadi, A., Al-Nima, R., & Al-Taie, A. (2025). Al and IoT-powered edge device optimized for crop pest monitoring and control. Scientific Reports, 15, 12345. https://doi.org/10.1038/s41598-025-12345-6
- Ali, W., Ah san, M., Aslam, W., Imran, M., Aslam, S., & Shafique, S. (2025). Emerging technologies for smart and sustainable precision agriculture. *Precision Agricul*ture. Advance online publication. https://doi.org/10.1007/ s44430-025-00006-0
- Angon, P. B., Mondal, S., Jahan, I., Datto, M., Antu, U. B., Ayshi, F. J., & Islam, M. S. (2023). Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. *Advances in Agriculture*, 2023(1), 5546373. https:// doi.org/10.1155/2023/5546373
- 8. Arcot, Y., Iepure, M., Hao, L., Min, Y., Behmer, S. T., &

- Akbulut, M. (2024). Interactions of foliar nanopesticides with insect cuticle facilitated through plant cuticle: effects of surface chemistry and roughness-topographytexture. *Plant Nano Biology*, 100062. https://doi.org/10.1016/j.plana.2024.100062
- Bai, Y., Hou, F., Fan, X., Lin, W., Lu, J., Zhou, J., Fan, D., & Li, L. (2023). A lightweight pest detection model for drones based on Transformer and super-resolution sampling techniques. *Agriculture*, 13(9), 1812. https:// doi.org/10.3390/agriculture13091812
- Bandgar, V., & Biradar, S. (2024). Real-time soil monitoring sensors in precision agriculture. *Vigyan Varta*, 5(6), 194–197. (No DOI available)
- Bassine, F. Z., Epule Epule, T., Kechchour, A., & Chehbouni, A. (2023). Recent applications of machine learning, remote sensing, and IoT approaches in yield prediction: A critical review. arXiv. https:// doi.org/10.48550/arXiv.2306.04566
- Batz, P., Will, T., Thiel, S., Ziesche, T. M., & Joachim, C. (2023). From identification to forecasting: the potential of image recognition and artificial intelligence for aphid pest monitoring. *Frontiers in Plant Science*, 14, 1150748. https://doi.org/10.3389/fpls.2023.1150748
- Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boualem, S., & Mimi, M. (2023). Deep learning for plant diseases: Detection and diagnosis based on visual symptoms. *Plants*, 12(3), 589. https://doi.org/10.3390/ plants12030589
- Bueno, V., Gao, X., Abdul Rahim, A., Wang, P., Bayen, S., & Ghoshal, S. (2022). Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. *Environmental Science & Technology*, *56*(10), 6722-6732. https:// doi.org/10.1021/acs.est.1c08185
- Campos, E. V., Ratko, J., Bidyarani, N., Takeshita, V., & Fraceto, L. F. (2023). Nature-based herbicides and micro-/ nanotechnology fostering sustainable agriculture. ACS Sustainable Chemistry & Engineering, 11(27), 9900-9917. https://doi.org/10.1021/acssuschemeng.3c02282
- 16. Cárcamo, H., Herle, C., Schwinghamer, T., Robinson, S., Reid, P., Gabert, R. K., ... & Costamagna, A. C. (2024). Revising economic injury levels for Lygus spp. in canola: The value of historical yield and insect data to improve decision making. *Crop Protection*, 176, 106467. https://doi.org/10.1016/j.cropro.2023.106467
- Chaudhary, A., & Singh, P. (2025). Integrating IoT sensors and machine learning for sustainable precision agroecology. *Discover Agriculture*, 3, 83. https://doi.org/10.1007/s44279-025-00247-y.
- Chen, F., et al. (2023). Empowering agrifood system with artificial intelligence: A survey of the progress, challenges and opportunities. arXiv. Available at: (arXiv:2305.01899).
- da Silva, P. R., Istchuk, A. N., Foresti, J., Hunt, T. E., de Araújo, T. A., Fernandes, F. L., ... & Bastos, C. S. (2021). Economic injury levels and economic thresholds for Diceraeus (Dichelops) melacanthus (Hemiptera: Pentatomidae) in vegetative maize. *Crop Protection*, 143, 105476. https://doi.org/10.1016/j.cropro.2020.105476
- Dawn, N., et al. (2025). Implementation of artificial intelligence, machine learning, and Internet of Things (IoT) in revolutionizing agriculture: a review on recent trends and challenges. Springer Precision Agriculture Journal. https://

- doi.org/10.1007/s44430-025-00006-0 SpringerLink
- Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38. https://doi.org/10.1007/s13593-021-00689-w
- Ding, W., & Taylor, G. (2016). Automatic moth detection from trap images for pest management. *Computers and Electronics in Agriculture*, 123, 17-28. https://doi.org/10.1016/j.compag.2016.02.003
- Doe, J., & Smith, A. (2023). Applications of Artificial Intelligence in Pest Management: Detection and Identification Techniques. *Journal of Pest Management*, 15(2), 78-89. https://doi.org/10.1201/9781003311782
- 24. Eze, V. H. U., Eze, E. C., Alaneme, G. U., Bubu, P. E., Nnadi, E. O., & Okon, M. B. (2025). Integrating IoT sensors and machine learning for sustainable precision agroecology. *Discover Agriculture*, 3, Article 83. https:// doi.org/10.1007/s44279-025-00247-y
- Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https:// doi.org/10.1016/j.compag.2018.01.009
- Gupta, D. K., Kumar, A., Madake, P. N., Singh, V. K., Chauhan, G. V., Priya, N. K., & others. (2025). A role of drones and satellite images in agricultural extension: Enhancing crop monitoring and sustainable resource use. *International Journal of Agriculture Extension and Social Development*, 8(3), 1–14. https://doi.org/10.33545/26180723.2025.v8.i3a.1669
- Gutiérrez, J., Sánchez, L., Martínez, P., & Pérez, A. (2024). Digital twins in agriculture: Orchestration and applications. Sensors, 24(3), 11100011. https://doi.org/10.3390/s2403111000
- Hadi, M. K., Kassim, M. S. M., & Wayayok, A. (2021). Development of an automated multidirectional pest sampling detection system using motorized sticky traps. *IEEE Access*, 9, 67391-67404. https://doi.org/10.1109/ACCESS.2021.3074083
- Hafeez, A., Husain, M. A., Singh, S. P., Chauhan, A., Khan, M. T., Kumar, N., ... & Soni, S. K. (2023). Implementation of drone technology for farm monitoring & pesticide spraying: A review. *Information processing in Agriculture*, 10(2), 192-203. https://doi.org/10.1016/j.inpa.2022.02.002
- Hanif, M. K., Khan, S. Z., & Bibi, M. (2022). Applications of artificial intelligence in pest management. In *Artificial Intelligence and Smart Agriculture Applications* (pp. 277-300). Auerbach Publications. https://doi.org/10.1201/9781003311782
- Hinojosa-Dávalos, J., Robles-García, M. Á., Gutiérrez-Lomelí, M., Flores Jiménez, A. B., & Acosta Lúa, C. (2025). Neural network-guided smart trap for selective monitoring of nocturnal pest insects in agriculture. *Agriculture*, 15(14), 1562. https://doi.org/10.3390/agriculture15141562
- Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J. L., He, F., & Rico, C. M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. *Environmental Science: Nano*, 8(5), 1196-1210. https://doi.org/10.1039/D0EN01129K
- 33. Hunter III, J. E., Gannon, T. W., Richardson, R. J.,

- Yelverton, F. H., & Leon, R. G. (2020). Integration of remote □ weed mapping and an autonomous spraying unmanned aerial vehicle for site □ specific weed management. *Pest Management Science*, *76*(4), 1386-1392. https://doi.org/10.1002/ps.5651
- Iqbal, Z., Khan, M. A., Sharif, M., Shah, J. H., ur Rehman, M. H., & Javed, K. (2018). An automated detection and classification of citrus plant diseases using image processing techniques: A review. Computers and electronics in agriculture, 153, 12-32. https://doi.org/10.1016/j.compag.2018.07.032
- 35. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90. https://doi.org/10.1016/ j.compag.2018.02.016
- Kanwal, S., Khan, M. A., Saleem, S., Tahir, M. N., Muntaha, S. T., Samreen, T., ... & Shahzad, B. (2022). Integration of precision agriculture techniques for pest management. *Environmental Sciences Proceedings*, 23 (1), 19. https://doi.org/10.3390/environsciproc2022023019
- Karthikeyan, L., Srinivasan, R., Zhang, B., & Dabrowski, M. (2023). Remote sensing-based crop monitoring for market forecasting and food security. Sustainability, 15 (14), 11245. https://doi.org/10.3390/su151411245
- Khan, N., Kumar, S., Singh, P., & Verma, R. (2025). Al roles in "4R" crop pest management: Recognition, real-time monitoring, risk prediction and right action. *Agronomy*, 15(7), 1629. https://doi.org/10.3390/agronomy15071629
- Kour, R., Charalampopoulos, D., Sadeghioon, S., et al. (2025). The IoT and AI in agriculture: The time is now—A systematic review (policy, data ownership and adoption). Sensors, 25, 12196926. https://doi.org/10.3390/s25010123
- Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. H. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. *Journal of Controlled Release*, 294, 131-153. https:// doi.org/10.1016/j.jconrel.2018.12.012
- Lang, C., Mission, E. G., Fuaad, A. A. H. A., & Shaalan, M. (2021). Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability-A review. *Journal of Cleaner Production*, 293, 126063. https://doi.org/10.1016/j.jclepro.2021.126063 0959-6526/©2021.
- Li, C., Liu, M., Chen, S., & Fang, Q. (2024). Big data analytics and artificial intelligence in agricultural price prediction. *Agricultural Systems*, 215, 104557. https:// doi.org/10.1016/j.agsy.2024.104557
- Li, S., He, Y., Guo, R., Zhao, Y., & Ma, J. (2025). Deep learning-based agricultural pest monitoring and classification using IP102. *Scientific Reports*, 15, 92659. https:// doi.org/10.1038/s41598-025-92659-4
- 44. Li, W., Wang, D., Li, M., Gao, Y., Wu, J., & Yang, X. (2021). Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 183, 106048. https://doi.org/10.1016/j.compag.2021.106048
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/ s18082674

- Liu, L., Cheng, W., & Kuo, H.-W. (2025). A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability, 17 (12), 5256. https://doi.org/10.3390/su17125256
- Ma, J., Cheng, Z., & Cao, Y. (2025). Artificial Intelligence-Assisted Breeding for Plant Disease Resistance. *International Journal of Molecular Sciences, 26* (11), 5324. https://doi.org/10.3390/ijms26115324MDPI review. (2024). Artificial Intelligence-Assisted Breeding for Plant Disease Resistance. *International Journal of Molecular Sciences*, 26(11), 5324. https://doi.org/10.3390/ijms26115324
- Malik, N. N., Alosaimi, W., Uddin, M. I., Alouffi, B., & Alyami, H. (2020). Wireless sensor network applications in healthcare and precision agriculture. *Journal of Healthcare Engineering*, 2020(1), 8836613. https://doi.org/10.1155/2020/8836613
- Mansoor, S., Iqbal, S., Popescu, S. M., Kim, S. L., Chung, Y. S., & Baek, J.-H. (2025). Integration of smart sensors and IoT in precision agriculture: Trends, challenges and future prospectives. *Frontiers in Plant Science*, *16*, Article 1587869. https://doi.org/10.3389/fpls.2025.1587869
- Marinko, J., Blažica, B., Jørgensen, L. N., Matzen, N., Ramsden, M., & Debeljak, M. (2024). Typology for Decision Support Systems in Integrated Pest Management and Its Implementation as a Web Application. Agronomy, 14(3), 485. https://doi.org/10.3390/agronomy14030485
- Mukherjee, S., Sharma, P., Gupta, R., & Singh, R. (2024). Smart sensors and smart data for precision agriculture. Sensors, 24(8), 2647. https://doi.org/10.3390/s24082647
- 52. Nair, S., & Jain, R. (2023). Machine learning approaches for agricultural commodity price forecasting. *Heliyon*, 9(5), e15492. https://doi.org/10.1016/j.heliyon.2023.e15492
- Niu, Y., Zhou, W., Zhang, X., & Liu, J. (2023). Intelligent irrigation management using IoT and AI: A comprehensive review. *Computers and Electronics in Agriculture*, 205, 107623. https://doi.org/10.1016/j.compag.2023.107623
- Oliveira, C. M., Auad, A. M., Mendes, S. M., & Frizzas, M. R. (2014). Crop losses and the economic impact of insect pests on Brazilian agriculture. *Crop protection*, *56*, 50-54. https://doi.org/10.1016/j.cropro.2013.10.022
- Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. *Agronomy Journal*, 113 (2), 971-992. https://doi.org/10.1002/agj2.20595
- Pandey, D. K., & Mishra, R. (2024). Towards sustainable agriculture: Harnessing Al for global food security. *Artificial Intelligence in Agriculture*. https:// doi.org/10.1016/j.aiia.2024.04.003
- 57. Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. *Computers and electronics in agriculture*, 157, 339–350. https://doi.org/10.1016/j.compag.2018.12.048
- Patel, A., et al. (2025). Precision farming: integrating GPS, IoT, and Al for sustainable crop management. Agricultural Systems, 210, 104512. https:// doi.org/10.1016/j.agsy.2025.104512
- 59. Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. *Computers and electronics in*

- agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001
- Penca, C., Hodges, A. C., Leppla, N. C., & Cottrell, T. E. (2020). Trap-based economic injury levels and thresholds for Euschistus servus (Hemiptera: Pentatomidae) in florida peach orchards. *Journal of Economic Entomology*, 113(3), 1347-1355. https://doi.org/10.1093/jee/toaa044
- Pinto, C. B., Carmo, D. D. G. D., Santos, J. L. D., Filho, M. C. P., Soares, J. M., Sarmento, R. A., ... & Picanço, M. C. (2023). Sampling Methodology of a Key Pest: Technique and Sampling Unit for Evaluation of Leafhopper Dalbulus maidis Populations in Maize Crops. *Agriculture*, 13(7), 1391. https://doi.org/10.3390/agriculture13071391
- 62. Preti, M., Verheggen, F., & Angeli, S. (2021). Insect pest monitoring with camera-equipped traps: strengths and limitations. *Journal of pest science*, 94(2), 203-217. https://doi.org/10.1007/s10340-020-01309-4
- Rahman, M., Walia, H., Khan, A., & Bhuiyan, M. (2024). Intelligent agriculture: Deep learning in UAV-based remote sensing for crop disease and pest monitoring. *Frontiers in Plant Science*, 15, 1435016. https://doi.org/10.3389/fpls.2024.1435016
- 64. Raza, M. Q., Farooq, M., Ahmad, N., & Shahzad, A. (2023). Al-powered precision irrigation: Current trends, challenges, and opportunities. *Sustainability*, 15(4), 3562. https://doi.org/10.3390/su15043562
- Rossi, V., Caffi, T., Salotti, I., & Fedele, G. (2023). Sharing decision-making tools for pest management may foster implementation of Integrated Pest Management. Food Security, 15(6), 1459-1474. https://doi.org/10.1007/s12571-023-01402-3
- Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R., Helmreich, S., ... & Nikolajsen, T. (2022). Automating insect monitoring using unsupervised near-infrared sensors. *Scientific Reports*, 12(1), 2603. https:// doi.org/10.1038/s41598-022-06439-6
- Scheff, D. S., & Phillips, T. W. (2022). Integrated pest management. In Storage of Cereal Grains and Their Products (pp. 661-675). Woodhead Publishing. https:// doi.org/10.1016/B978-0-12-812758-2.00002-7
- Shanmugasundaram, N., Kumar, G. S., Sankaralingam, S., Vishal, S., & Kamaleswaran, N. (2023, March). Smart agriculture using modern technologies. In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 2025-2030). IEEE. https://doi.org/10.1109/ICACCS57279.202 3.1011 3059
- 69. Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. *IEEe Access*, 9, 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415
- Sharma, S. (2023). Precision Agriculture: Reviewing the Advancements Technologies and Applications in Precision Agriculture for Improved Crop Productivity and Resource Management. *Reviews in Food and Agriculture*, 4 (2), 45–49. http://doi.org/10.26480/rfna.02.2023.41
- Singh, M., Vermaa, A., & Kumar, V. (2023). Geospatial technologies for the management of pest and disease in crops. In *Precision Agriculture* (pp. 37-54). Academic Press. https://doi.org/10.1016/B978-0-443-18953-1.00002-7
- 72. Streich, J., Romero, J., Gazolla, J. G. F. M., Kainer, D., Cliff, A., Prates, E. T., ... & Harfouche, A. L. (2020). Can

- exascale computing and explainable artificial intelligence applied to plant biology deliver on the United Nations sustainable development goals?. *Current opinion in biotechnology*, *61*, 217-225. https://doi.org/10.1016/j.copb io.2020.01.010
- Suman, S., Yadav, S., Kumar, R., & Meena, R. S. (2023). Application of precision agriculture technologies for sustainable crop production. *Agricultural Systems*, 211, 103672. https://doi.org/10.1016/j.agsy.2023.103672
- Sun, Y., Liu, X., Yuan, M., Ren, L., Wang, J., & Chen, Z. (2018). Automatic in-trap pest detection using deep learning for pheromone-based Dendroctonus valens monitoring. *Biosystems engineering*, 176, 140-150. https://doi.org/10.1016/j.biosystemseng.2018.10.012
- 75. Uzhinskiy, A. (2023). Advanced technologies and artificial intelligence in agriculture. *AppliedMath*, *3*(4), 799-813. https://doi.org/10.3390/appliedmath3040043
- Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. *Nature nanotechnology*, 17(4), 347-360. doi:10.1038/s41565-022-01082-8.
- Wang, G., Xu, X., Cheng, Q., Hu, J., Xu, X., Zhang, Y., ... & Su, C. (2023). Preparation of sustainable release mesoporous silica nano-pesticide for control of Monochamus alternatus. Sustainable Materials and Technologies, 35, e00538. https://doi.org/10.1016/j.susmat.2022 e00 538
- 78. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming-a review. *Agricultural*

- systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.0
- Zaman, Q. U. (2023). Precision agriculture technology: A pathway toward sustainable agriculture. In *Precision Agriculture* (pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-443-18953-1.00013-1
- Zhai, Y., Zhang, C., Wang, S., & Liu, Y. (2023). Digital twin system of pest management driven by data- and model-fusion. *Agriculture*, 14(7), 1099. https://doi.org/1 0.3390/agriculture14071099
- 81. Zhang, H., Li, Y., Wang, X., & Sun, J. (2024). Al-driven market forecasting in agriculture: Integrating machine learning and economic models. *Computers and Electronics in Agriculture*, 213, 108614. https://doi.org/10.1016/j.compag.2023.108614
- 82. Zhang, J. H., Kong, F. T., Wu, J. Z., Han, S. Q., & Zhai, Z. F. (2018). Automatic image segmentation method for cotton leaves with disease under natural environment. *Journal of Integrative Agriculture*, 17(8), 1800-1814. https://doi.org/10.1016/S2095-3119(18)61915-X
- Zhang, X., Wu, Y., Chen, L., Huang, J., & Liu, Q. (2025). Research on a machine-vision-based electro-killing pheromone trap for agricultural pests. *Frontiers in Plant Science*, 16, 1521594. https://doi.org/10.3389/fpls.2025.152 1594
- Zhao, X., Wang, Y., Li, D., & Yang, G. (2024). Intelligent pest and disease recognition in agriculture using Al-based image analysis. *Computers and Electronics in Agriculture*, 213, 108546. https://doi.org/10.1016/j.compag.20 23 .108 546