Journal of Applied and Natural Science
17(3), 1409 - 1419 (2025)

ISSN : 0974-9411 (Print), 2231-5209 (Online)
journals.ansfoundation.org

ANSF

APPLIEDAND NATURAL
SCIENCEFOUNDATION

Review Article

Recent advances in insect pest management strategies emphasizing on
Artificial intelligence: A overview

Sheikh Fiza

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional
University, Phagwara (Punjab), India

Suzain Shafi

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional
University, Phagwara (Punjab), India

Renita Pradhan

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional
University, Phagwara(Punjab), India

Amaninder Kaur Riat*

Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional
University, Phagwara(Punjab), India

Article Info

https://doi.org/10.31018/
jans.v17i3.6710

Received: April 04, 2025
Revised: September 05, 2025
Accepted: September 13, 2025

*Corresponding author: E-mail: amaninder.21097 @lpu.co.in

How to Cite

Fiza, S. et al. (2025). Recent advances in insect pest management strategies emphasizing on Artificial intelligence: A overview.
Journal of Applied and Natural Science, 17(3), 1409 - 1419. https://doi.org/10.31018/jans.v17i3.6710

Abstract

Insect pests pose a serious threat to agricultural production and food security, accounting for 30—40% of yearly crop losses
worldwide. Conventional pest control techniques are often labour-intensive, ineffective, and unable to adapt to the changing
habits of pests. By enhancing pest identification, classification, and management through the application of sophisticated algo-
rithms, sensor technologies, and predictive modelling, Artificial intelligence (Al) provides a game-changing solution. Al-powered
methods minimize financial losses and promote sustainable agriculture by enabling early pest detection, reducing pesticide
overuse, and facilitating data-driven decision-making. This paper provides a comprehensive examination of Al and smart sensor
applications in pest management, highlighting their contributions to crop monitoring, environmental assessment, and resource
efficiency. Weather monitoring systems, crop health sensors, automatic irrigation controllers, and soil sensors are some of the
key technologies covered. Furthermore, the potential of innovations such as sensor fusion, hyperspectral imaging, and drone-
based sensing to enhance real-time agricultural data collection and decision-making is investigated. It also examines how the
Internet of Things (IoT) and Al-driven analytics might be integrated into precision agriculture to maximize pest control, fertiliza-
tion, and irrigation. Al and smart sensors support sustainable pest management and robust agricultural ecosystems by facilitat-
ing effective resource use and reducing environmental impact. This review emphasizes how important Al and smart sensor
technologies are to improving precision farming and bolstering global food security.

Keywords: Artificial Intelligence (Al), Integrated pest management, Nanopesticide, Weak Al precision farming

INTRODUCTION

Integrated pest management (IPM), is a comprehen-
sive strategy that guarantees efficient, ecologically
friendly, and socially conscious pest control. Food pro-
duction is improved, farmer revenues are increased,
and the ecological effect is reduced. Limited farmer
involvement and knowledge of IPM principles, however,
continue to be problems. The impact of global trade,
consumer demands for sustainable food, and techno-
logical advancements are all incorporated into a mod-

ernized IPM model to address these gaps (Angon et
al., 2023). Identification of pest control options, utiliza-
tion of resources and expertise, facilitation of data-
driven decision-making, and promotion of broad adop-
tion through outreach are important elements. This
strategy promotes a sustainable food system by strik-
ing a balance between environmental, social, and eco-
nomic concerns. Agriculture can become more sustain-
able, raise farmer incomes, and increase global food
security by rearranging IPM (Rossi et al., 2023;
Deguine et al., 2021).
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Use of nanopesticides in integrated pest manage-
ment

In comparison with traditional pesticide formulations,
nanopesticides may offer several benefits, including
enhanced effectiveness, reduced environmental impact,
and targeted delivery to specific pests or plant tissues
(Scheff et al., 2022). For instance, the stability, solubili-
ty, and controlled release of pesticide active compo-
nents can be enhanced by nanoencapsulation, which
reduces the quantity of pesticide required and minimiz-
es off-target effects (Kumar et al.,2019) Moreover, pes-
ticides can be more effectively and locally controlled by
using nanoformulations to improve their translocation
and penetration into plant tissues (Wang et al., 2022;
Arcot, et al., 2024). Innovative pest management op-
tions are provided by nanopesticides, which combine
nanomaterials such as silica, titanium dioxide, lipid-
based carriers, and polymeric nanoparticles. The use of
pesticides has decreased significantly, and pest man-
agement has improved thanks to Integrated Pest Man-
agement (IPM) techniques, which include the use of
resistant cultivars, such as Bt cotton. Insect resistance
concerns, however, emphasize the necessity of effec-
tive resistance control. To guarantee that pest manage-
ment methods are economical and avoid overusing
pesticides while preserving crop health and sustainabil-
ity, IPM frameworks rely on Action Thresholds (ATs)
and Economic Injury Levels (ElLs) (Lang et al., 2021;
Campos et al., 2023; Bueno et al., 2022).

Monitoring and decision making

Techniques for scouting and sampling are essential
components of IPM programs' monitoring and decision-
making processes (Hong et al., 2021; Wang et al.,
2023).In addition to these sampling approaches, sever-
al instruments and methods are used to track pest pop-
ulations and the damage they cause to crop plants.
These methods include visual inspection, the use of
sweep nets, sticky traps, pheromone traps, and remote
sensing technologies (Pinto et al., 2023; Singh et al.,
2023).

Unmanned aerial vehicles (UAVs), satellite imaging,
and aerial photography are examples of remote sensing
techniques that are being utilized more and more to
track crop health and identify insect outbreaks on a
wide geographic scale (Hadi et al., 2021; Rydhmer et
al., 2022; Olson et al., 2021).

IPM practitioners are empowered to make data-driven
decisions about the necessity and timing of pest control
actions by integrating various monitoring tools and
methodologies with suitable sampling designs. IPM has
recently leveraged the development of artificial intelli-
gence (Al) for identification and decision-making. Ac-
cording to Batz et al., Al can enhance aphid pest fore-
casting in several ways. 1) optimal insect identification
using image recognition and deep learning, 2) forecast-

ing model based on neural networks and machine
learning, and 3) monitoring infrastructure optimization
to enhance predictive models (Hunter lll et al., 2020).
In IPM decision-making, action thresholds (ATs) and
economic injury levels (ElLs) are crucial instruments
(Hafeez et al., 2023; Batz et al., 2023; da Silva et al.,
2021). When pest control procedures are economically
justified, they help farmers and pest management ex-
perts make that determination. ATs are set at a lower
pest density to keep populations from reaching the EIL,
whereas ElLs reflect the pest population density at
which the cost of crop damage equals the cost of man-
agement (Carcamo et al., 2024; Penca et al., 2020; da
Silva et al., 2021).

One of the main causes of agricultural harm worldwide
is recognized to be insect pests. Agricultural losses can
be reduced by managing and preventing insect pests
(Carcamo et al., 2024). This activity requires accurate
detection and classification of insect pests to distin-
guish between species, estimate the quantity of pest
management equipment needed, and identify the vari-
ous host species (Penca et al., 2020). Interest in auto-
matic insect pest recognition has grown recently since
this activity requires costly, continuous monitoring. The
traditional approach to insect pest monitoring relies on
subject matter specialists to manually identify, which is
labour-intensive, prone to error, and applicable to a
wider range of applications (Ahmed et al., 2018;
Oliveira et al., 2014; Ding et al., 2016). Additionally,
the careless use of pesticides frequently has the unin-
tended consequence of harming ecosystems and bene-
ficial organisms. Al offers a revolutionary solution to
these problems, enabling the implementation of target-
ed treatments that maximize effectiveness while mini-
mizing ecological impacts (Li et al., 2021; Sun et al.,
2018; Sharma et al., 2020). A new approach to auto-
matic pest detection and monitoring in contemporary
agriculture is provided by implementing Al through
computer vision that is integrated with cameras and
internet connections. This significantly enhances the
effectiveness of insect surveillance in agricultural sys-
tems (Preti et al., 2021).

Artificial Intelligence (Al) powered pest manage-
ment: Revolutionizing forestry and agriculture

The field of pest management in forestry and agricul-
ture has become a promising area for the successful
application of Al technology, providing innovative solu-
tions that are more accurate, efficient, and environmen-
tally friendly (Streich et al., 2020). Al-related theories
and technologies, such as Smart Pest Monitoring
(SPM), have emerged as a new scientific area within
Integrated Pest Management (IPM) due to the rapid
advancement of Artificial intelligence in research (Partel
et al., 2019). By combining artificial crops intelligence
(Al), the Internet of Things (loT), big data, and other
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modern information technologies and tools, the SPM
seeks to improve the ability of pest monitoring and ear-
ly warning while also advancing the autonomous and
intelligent data gathering of important insect pests (Li et
al.,, 2021). The decision-making process regarding
management actions, such as pesticide spraying and
other procedures, is aided by the identification and de-
tection of insects to count and analyze their density
using relevant theories (Igbal et al., 2018). Machine
learning, computer vision, and data analytics are just a
few of the many techniques that comprise artificial intel-
ligence (Al), enabling the analysis of large, complex
datasets. By improving precision and forecasting accu-
racy, this capacity offers a previously unheard-of bene-
fit in addressing pest-related difficulties (Patricio et al.,
2018). Artificial intelligence and pest management,
when combined, have the potential to minimize ecologi-
cal impact, optimize resource use, and reduce depend-
ency on chemical treatments (Doe et al., 2023). Artifi-
cial intelligence in pest management has a promising
future, but several obstacles remain to be overcome,
including concerns about data privacy, legal compli-
ance, and the need for multidisciplinary cooperation
among disciplines such as computer science, ecology,
and agronomy (Hanif et al., 2022).

To ensure broad benefits across various agricultural
landscapes, it is also crucial to verify fair access to Arti-
ficial intelligence technology for small-scale farmers
and areas with limited resources (Uzhinskiy et al.,
2023). The application of Atrtificial intelligence has great
promise for transforming the control of insect pests in
horticulture, forestry, and agriculture. Stakeholders can
successfully mitigate pest risks, enhance productivity,
and promote environmental sustainability in food and
fibre production systems by leveraging Al-driven in-
sights and solutions (Pandey et al., 2024). The security
of global food systems can be ensured while reducing
their ecological footprint by utilizing Al to transform pest
control from a reactive to a proactive and intelligent
approach (Kanwal et al., 2022).This review examines
the various facets of Al's role in pest management.
Through an analysis of technical developments, this
investigation examines the benefits and limitations of
Al, as well as how Al-driven systems support sustaina-
ble agricultural practices, early pest identification, and
informed decision-making.

Artificial intelligence in modern agriculture: En-
hancing sustainability and productivity

The foundation of human civilization, agriculture has
provided food, raw materials, and employment. Howev-
er, it faces numerous challenges today, including re-
source management, pest infestations, climate change,
and soil degradation. Atrtificial Intelligence (Al) has
emerged as a transformative force in agriculture, help-
ing farmers increase sustainability, reduce costs, and

optimize productivity. Artificial Intelligence is catego-
rized using various methods, including functionality,
learning methodology, and application domain. First,
the Artificial intelligence was separated into two main
divisions according to its functionality: narrow Al (weak
Al), which handles one or a small number of tasks. It
lacks overall intelligence, despite being quite good at
what it does. Virtual assistants, picture recognition sys-
tems, and recommendation algorithms are a few exam-
ples. Weak Al is frequently utilized in modern farming
to perform specialized tasks, including yield prediction,
insect control, and crop monitoring. Sensors, big data
analytics, and machine learning algorithms are the
foundation of its operation (Zhang et al., 2018).

Weak Artificial intelligence (Weak Al or Narrow Al)
in agriculture

Agriculture is one of the most critical sectors for ensur-
ing food security and economic stability worldwide.
Farmers, however, face various challenges, including
climate change, soil erosion, water shortages, and un-
stable market demands (Wolfert et al., 2017). Al, spe-
cifically Weak Al, has become a revolutionary force,
streamlining farming operations through data-driven
insights and automation. The use of Atrtificial Intelli-
gence (Al) in contemporary agriculture has led to sig-
nificant improvements in efficiency, precision, and sus-
tainability. Weak Al (Narrow Al), created for a single
purpose, has been instrumental in automation, predic-
tive analysis, and real-time decision-making in agricul-
ture. This report examines the applications, benefits,
and drawbacks of Weak Al in agriculture, supported by
empirical examples and scholarly research.

Weak Al systems are tailored to particular tasks, in-
cluding:

Precision farming (soil health and crop monitoring)
To enhance maximum soil health and crop observation
for increased agricultural performance, precision farm-
ing makes use of advanced technologies such as re-
mote sensing, GPS mapping, Internet of Things (loT)
sensors, and artificial intelligence (Patel et al., 2025).
Using soil sensors to gauge critical properties such as
moisture levels, pH levels, and nutrient levels in real-
time, farmers can effectively control fertilizer and irriga-
tion (Bandgar & Biradar, 2024). Drone and satellite
imagery high-resolution data deliver crop health infor-
mation that can detect stressors like pest attack, nutri-
ent deficiencies, and water stress before they intensify
(Gupta et al., 2025). Based on the analysis of such
data, machine learning models deliver forecasted infor-
mation that supports targeted interventions that have
reduced environmental footprints, higher yields, and
less waste (Bassine et al., 2023). Aside from boosting
productivity, this data-driven approach encourages
sustainable agriculture through resource conservation
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and reducing excessive chemical use, ensuring long-
term ecosystem and soil fertility stability in the end.

Pest and disease identification (image recognition
and predictive analytics)

A novel technique for detecting pests and diseases
using machine learning, computer vision, and artificial
intelligence (Al) to detect and manage agricultural
threats is image recognition and predictive analytics
(Zhao et al., 2024). Through deep learning models,
including convolutional neural networks (CNNs), image
recognition technology examines crop images and em-
ploys morphological characteristics, color variations,
and visual patterns to detect pests or diseases (Brahimi
et al., 2023). For improved accuracy and adaptability
across numerous plant species and weather conditions,
such systems are often taught big datasets that have
thousands of labeled images (Ferentinos, 2018). Pre-
dictive analytics, by contrast, applies real-time sensor
readings, past data, and weather patterns to predict the
probability of disease occurrence or insect infestations
(Kamilaris & Prenafeta-Boldu, 2018). When combined,
both technologies enable early warnings to farmers and
agricultural experts, allowing them to adopt preventive
measures like crop rotation, precision pesticide applica-
tion, or biological pest control. This combination con-
serves loss of crops, decreases the use of chemicals,
and promotes sustainable agriculture practices, in addi-
tion to enhancing precision in pest and disease control.
To smallholder farmers and large agribusinesses, this
technology is accessible and scalable because of real-
time monitoring facilitated by mobile apps and drone
surveillance systems with Al-based recognition plat-
forms. Accuracy, efficiency, and integration of the iden-
tification of pests and diseases with intelligent farming
ecosystems will all grow in the future as the study of Al
models and data collection continues.

Intelligent irrigation (Efficiency in using water)

By merging intelligent technology such as artificial intel-
ligence (Al), data analysis, and the Internet of Things
(loT), smart irrigation is an innovative approach that
optimizes water utilization in agriculture (Niu et al.,
2023). Because of overuse, inefficient dispensation,
and insufficient real-time tracking, conventional irriga-
tion methods are prone to wastage of water. These
problems are fixed by smart irrigation systems, which
employ remote sensing, weather forecasting, and soil
moisture sensors to accurately calculate the right quan-
tity of water crops need at any time (Adeyemi et al.,
2024). In order to automate watering schedules and
have water supplied efficiently and only when required,
Al-based algorithms interpret real-time data about the
soil, water needs of plants, and climatic conditions
(Raza et al., 2023). Additionally, monitoring through
drones and satellite images are able to analyze plant

health by determining the levels of stress that point to-
wards excessive moisture or deficiency of water (Patel
et al., 2025). Smart irrigation optimizes crop yields in
agriculture, minimizes erosion of the soil, and saves
energy for pumping and distribution, while also saving a
precious resource by reducing water wastage and opti-
mizing distribution. Applying intelligent irrigation sys-
tems is increasingly vital for sustainable and resilient
agriculture as worries about water shortage and climate
change grow.

Market forecasting (examining market trends for
more informed pricing)

Producers, suppliers, and farmers can make informed
production and price decisions using market forecast-
ing, an important agriculture tool that uses data analyt-
ics, machine learning, and economic models to forecast
market trends (Zhang et al., 2024). Market forecasting
assists in anticipating future price movements by study-
ing historic price information, supply and demand fluctu-
ations, shopper behavior, and extrinsic conditions like
weather conditions, trade policies, and international
commodity trends (Nair & Jain, 2023). In order to ana-
lyze enormous amounts of real-time data and find pat-
terns and relationships not discernible using traditional
analysis, sophisticated prediction models use artificial
intelligence (Al) and big data analytics (Li et al., 2024).
In addition, satellite imagery and remote sensing have
the capability to offer current data regarding crop health
globally, helping in predicting supply shortages or sur-
pluses that affect market prices (Karthikeyan et al.,
2023). Through facilitation of strategic thinking for trade
regulations and food safety, market forecasting also
benefits policymakers. Farmers and agribusinesses can
assist in developing a more stable and efficient agricul-
tural market, reduce financial risks, and boost profitabil-
ity by leveraging technology-based forecasting meth-
ods.

Although General Al (Strong Al) is still in its theoretical
phases, Weak Al is already extensively used in actual
agricultural practices (Kamilaris & Prenafeta-Boldu,
2018).

Artificial intelligence's revolutionary effect on mod-
ern agriculture

Artificial intelligence (Al) is transforming contemporary
agriculture (Liakos et al., 2018; Sharma, 2023). Narrow
Al already enhances agriculture using predictive model-
ing, automation, and real-time analysis (Kamilaris &
Prenafeta-Boldu, 2018). Al-driven hardware that max-
imizes irrigation, planting, and crop tracking technolo-
gies includes drones, satellites, 0T sensors, and smart
tractors from John Deere (Patel et al., 2025). Whereas
intelligent irrigation systems such as NetBeat enhance
water efficiency through integrating soil and weather
information, Al-based pest and disease management
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Table 1. Artificial intelligence (Al) based strategies for insect pest management

Al-Based Mechanism Of Ac- Applications Core Bene- Examples Target Insect  Support-

Strategy tion fits of Al- Pest(s) ing Refer-
Powered ences
Tools

Smart Sen- In addition to moni- Pest popula- Reduced Semios Corn borers, Eze et al.,

sor networks toring temperature tion tracking, pesticide use, (pheromone fruit flies, and 2025
and humidity, loT- ongoing field real-time sensors codling moths.
enabled sensors use surveillance, monitoring, powered by
motion, sound, and and automat- early identifi- Al)
pheromone-based ed alerts for cation, and
traps to identify insect  early pest cheaper ex-
activity. identification penses.

Automated Drones and cameras  Early-stage Minimal crop ~ Precision Grasshoppers
Drones using  using artificial intelli- detection, damage, pre- Hawk (pest , armyworms,

Al and Com-  gence (Al) take pic- mapping of cision pest monitoring and locusts. Bai et al.,

puter Vision tures of crops, then affected areas, management, via drone) 2023
use image recognition and extensive  and de-
to determine the ex- pest identifica- creased reli-
tent of damage and tion ance on man-
detect the presence power
of pests.

Al-Powered Smart traps using Analysis of Eco-friendly Trapview Stink bugs, Hinojosa-
Automated cameras, sensors, population approach, (Al-powered  beetles, and Davalos et
Pest Traps and artificial intelli- density, intelli-  reduced reli- automated fruit flies. al., 2025

gence (Al) algorithms  gent pest ance on pes-  pest trap)
automatically provide  management, ticides, real-

data while identifying  and non- time pest

and classifying pests chemical pest  population

they have trapped control. monitoring.

Big Data & Al provides insights Al-assisted Enhanced Climate Cutworms, Dawn et
Cloud Com- into pest manage- pest manage-  resource effi-  Corporation  Weevils, and al., 2025
puting ment by integrating ment sugges-  ciency, data-  (Al-powered  Thrips.

data from several tions and re- driven deci- disease and
sources, including mote pest sion-making, pest predic-
field sensors, satellite  monitoring. and real-time  tion)
risk assess-
ment
Al-powered systems Action plans, Lower envi- Plantix (a Leaf miners,
examine pest pat- pest alarms, ronmental pest detect-  spider mites,
o terns and recommend and smart impact, more  ing mobile and

Decision the best use of pesti-  agricultural economical app) caterpillars Marinko

Suppor.t Sys- cides, biological con- dashboards farming, bet- et al., 2024

tems W'Fh Al trol techniques, and via mobile ter decision-

Integration other forms of inter- apps. making, and

(DSS) vention. higher agri-

cultural out-
put.

Pest- Al analyzes plant Creation of Long-term The genetically Bollworms, (Ma et al.,

Resistant DNA responses to crops resistant  insect re- modified pest-  Stem bor- 2025

Genetic Al pest invasions, which  to pests and sistance, resistant crop ers,

Models helps with genetic environmental  decreased known as and root
engineering research  friendly pest reliance on BASF's InVigor maggots
to create crop varie- management chemicals, Canola
ties resistant to pests.  techniques. and improved

crop resili-
ence.
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technologies such as Plantix facilitate early diagnosis of
problems. Al-based market forecasting strengthens
price forecasts and supply chain management (Zhang
et al., 2024). General Al can potentially develop im-
proved climate adaption strategies, enhance autono-
mous farming, and aid decision-makers in ensuring the
sustainability and security of food in the future. Al can
also result in virtual agronomists for on-the-spot farm-
ing guidance and genetic engineering advancements
such as CRISPR-based crop madification. Al in agricul-
ture also has tremendous potential for enhancing resili-
ence, sustainability, and efficiency in the future but en-
suring its benefits widely reach will need to address
cost, accessibility, and ethics concerns.

Using Precision technology to address global agri-
cultural challenges: Smart farming for a growing
world

A revolutionary approach to contemporary agriculture,
precision ag. riculture—also referred to as smart farm-
ing or precision farming—has arisen to solve the urgent
global issues of resource efficiency, environmental sus-
tainability, and food security. Precision agriculture al-
lows farmers to precisely customize inputs and inter-
ventions to meet the demands of individual plants or
fields by integrating smart sensors to monitor and eval-
uate particular characteristics of crops, soil, and envi-
ronmental conditions. Precision farming has several
potential advantages. Initially, it promises to drastically
boost crop yields and overall production while cutting
down on resource waste (Akaka et al., 2023). In addi-

tion, precision agriculture promotes sustainable and
ethical agricultural methods by reducing environmental
effects and maximizing resource utilization (Zaman and
Q. U., 2023). Moreover, resilience to climatic variability
is improved by anticipating and adapting to changing
environmental conditions, which increases the sector's
capacity to endure the difficulties brought on by global
climate change.

Role of Smart sensor technologies in advancing
modern agriculture

In a bid to change the way food is produced and cope
with numerous challenges in the agricultural sector to-
day, smart sensor technologies need to be embraced in
modern agriculture (Shanmugasundaram et al., 2023).
These advanced sensors, with their modern capabilities
and connectivity with cutting-edge technology, offer
many benefits that underpin stronger, more efficient,
and sustainable farming practices
(Shanmugasundaram et al., 2023). Smart sensors
provide precision, real-time information on key
areas like crop well-being, nutrient status, soil water,
and environmental factors (Malik et al., 2020). It state
that the presence of such precise and timely infor-
mation allows farmers to design their practices exactly
according to crop needs and make efficient decisions.
Through precision agriculture practices — where each
area of the field is managed based on its own require-
ments — farmers can optimize the use of resources,
minimize waste, and boost total output (Malik et al.,
2020).
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Enhancing Agricultural sustainability and climate
resilience through Smart sensor technologies

This minimizes wastage and ensures that inputs are
used where and when they are most required by facili-
tating targeted use of water, fertilizers, and pesticides
(Suman et al., 2023). With the world's growing popula-
tion and limited natural resources, efficiency in using
resources is paramount. Through the provision of pre-
cise scheduling of irrigation, better application of nutri-
ents, and tracking of environment conditions to prevent
wasteful practices, smart sensors play a crucial role in
improving resource efficiency (Aarif et al., 2025). Ena-
bling environmentally sound and sustainable agriculture
by conserving energy, water, and fertilizer, smart sen-
sor technologies are promoted (Aarif et al., 2025). Early
indication of diseases, pests, and stressors can be
identified with the help of smart sensors in crop health
monitoring, allowing prompt action. Rapid detection and
response to potential threats minimize yield losses and
prevent disease spread, reducing dependence on
chemical application while promoting overall crop
health (Mukherjee et al., 2024). Smart sensors also
enable the development of climate resilience as climate
change keeps impacting agricultural productivity. Farm-
ers are able to adjust their practice in accordance with
changing climatic patterns by tracking weather, soil
water holding capacity, and other climatic conditions
(Aarif et al., 2025).

Leveraging Smart sensor technologies for sustain-
able agriculture and global food security

This flexibility ensures consistency in agricultural pro-
duction and enhances the sector's resistance to ex-
treme weather conditions (Chen et al., 2023). Intelligent
sensors produce voluminous amounts of data which,
when combined with data analytics and artificial intelli-
gence, offer actionable insights into farm management
and crop vyields optimization (Chaudhary & Singh,
2025). The analytics allow for trend analysis, predictive
modeling, and customized recommendations to boost
agriculture practice and profitability (Ali et al., 2025)
The development of sensor technology has brought
about cost-effective and accessible solutions that are
within the reach of smallholder farmers, giving them
access to innovative farming methods. Encouraging
efficient resource use, smart sensors aid in supporting
sustainability by minimizing chemical use, conserving
water, and healthier soils (Liu et al., 2025). In addition,
smart sensors provide for the early detection of pests
and diseases by providing real-time crop health infor-
mation, allowing instant intervention and minimized use
of chemical controls (Mansoor et al., 2025). In a world
with food security and environmental threats, integrat-
ing smart sensor technology in contemporary agricul-
ture is critical to improving productivity, sustainability,
and resilience.

Future perspectives

Al-based pest control is shifting towards edge Al sys-
tems integrated within traps, UAVs, and farm gateways
to facilitate real-time decision-making without full de-
pendence on cloud computing. Initial tests pairing loT
sensors with embedded Al chips have shown fast pest
detection and intervention functions (Al-Haddad et al.,
2025). At the same time, intelligent pheromone traps
and UAV-assisted monitoring pipelines are enhancing
the accuracy of small-insect recognition, making timely
and targeted pest management possible with minimal
pesticide application (Zhang et al., 2025; Li et al.,
2025).

A further developing field is the application of digital
twins to crop—pest ecosystems—virtual representations
that combine real-time sensor streams and predictive
models to model management options prior to applica-
tion in the field (Gutiérrez et al., 2024; Zhai et al.,
2023). Such systems will allow for optimization of inter-
vention timing, resource deployment, and cost-benefit
planning (Rahman et al., 2024).

Scaling these technologies, however, involves over-
coming challenges like dataset imbalance, regional
variability, data governance, and farmer adoption (Kour
et al., 2025). Solutions lie in federated learning to ena-
ble updates on Al models without raw data transfer,
explainable Al to foster trust, and human-in-the-loop
systems that integrate Al analytics with human exper-
tise (Kour et al., 2025; Khan et al., 2025). Combined,
these advances in edge Al, intelligent monitoring devic-
es, and digital twin technology hold the potential for
more sustainable, efficient, and responsive pest man-
agement in the future.

Conclusion

By limiting crop damage, decreasing the environmental
impact, and optimizing pesticide usage, Al-driven pest
management enhances efficiency. Precision farming,
which increases production and sustainability, is made
possible by smart sensors and predictive analytics.
Food security and resource optimization rely on Al ad-
vancements, despite ongoing issues such as cost and
accessibility. Al will propel global agriculture toward a
more sustainable and effective future as technology
develops. This review highlights the importance of
smart sensors in enhancing agricultural sustainability,
improving production, and optimising resources. Their
combination of IoT, Al, and data analytics provides cre-
ative answers to problems related to environmental
preservation and food security. The key to guarantee-
ing broad adoption will be removing implementation
obstacles via cooperation and information sharing.
Smart sensors will continue to revolutionise contempo-
rary farming as technology advances, facilitating preci-
sion farming and enabling the development of robust,
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sustainable food production systems. The combination
of smart sensor technologies, 10T, Al, and data analyt-
ics has tremendous potential to improve food security
and environmental sustainability. Widespread ac-
ceptance depends on overcoming implementation ob-
stacles via cooperation and knowledge exchange.
Through the use of real-time data and sophisticated
analytics, farmers can enhance yields, optimise re-
source management, and implement more sustainable
farming practices. Future prospects for precision farm-
ing are enormous, as it promotes increased production,
enhanced efficiency, and improved resilience. As tech-
nology advances, smart sensors will be crucial in devel-
oping farming systems that are both flexible and sus-
tainable, thereby meeting the demands of a changing
environment and an expanding global population.

Conflict of interests
The authors declare that they have no conflict of
interest.

REFERENCES

1. Aarif, M., Anwar, S., Kumar, P., Singh, V., Khan, M. F., &
Singh, R. (2025). Smart sensor technologies shaping the
future of precision agriculture: Recent advances and fu-
ture outlooks. Wireless Communications and Mobile Com-
puting, 2025, 1-16. https://doi.org/10.1155/2025/6632234

2. Adeyemi, O., Dursun, E., Scholz, M., & Shah, S. H.
H. (2024). Advances in intelligent irrigation systems for
sustainable agriculture. Agricultural Water Management,
288, 108555. https://doi.org/10.1016/j.agwat.2024.108555

3. Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things
(loT) for smart precision agriculture and farming in rural
areas. IEEE internet of things journal, 5(6), 4890-4899.
https://doi.org/10.1109/J10T.2018.2879579

4. Akaka, J., Garcia-Gallego, A., Georgantzis, N., Rahn, C.,
& Tisserand, J. C. (2023). Development and Adoption of
Model-Based Practices in Precision  Agriculture.
In Precision Agriculture: Modelling (pp. 75-102). Cham:
Springer  International  Publishing. DOI https://
doi.org/10.1007/978-3-031-15258-0_4

5. Al-Haddad, M., AbdulRazzaq, S., Hadi, A., Al-Nima, R., &
Al-Taie, A. (2025). Al and loT-powered edge device opti-
mized for crop pest monitoring and control. Scientific Re-
ports, 15, 12345. https://doi.org/10.1038/s41598-025-
12345-6

6. Ali, W., Ah san, M., Aslam, W., Imran, M., Aslam, S., &
Shafique, S. (2025). Emerging technologies for smart and
sustainable precision agriculture. Precision  Agricul-
ture. Advance online publication. https://doi.org/10.1007/
$44430-025-00006-0

7. Angon, P. B., Mondal, S., Jahan, I., Datto, M., Antu, U. B.,
Ayshi, F. J., & Islam, M. S. (2023). Integrated pest man-
agement (IPM) in agriculture and its role in maintaining
ecological balance and biodiversity. Advances in Agricul-
ture, 2023(1), 5546373. https://
doi.org/10.1155/2023/5546373

8. Arcot, Y., lepure, M., Hao, L., Min, Y., Behmer, S. T., &

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Akbulut, M. (2024). Interactions of foliar nanopesticides
with insect cuticle facilitated through plant cuticle: effects
of surface chemistry and roughness-topography-
texture. Plant ~ Nano Biology, 100062. https://
doi.org/10.1016/j.plana.2024.100062

Bai, Y., Hou, F., Fan, X, Lin, W., Lu, J., Zhou, J., Fan, D.,
& Li, L. (2023). A lightweight pest detection model for
drones based on Transformer and super-resolution sam-
pling techniques. Agriculture,  13(9), 1812. https://
doi.org/10.3390/agriculture13091812

Bandgar, V., & Biradar, S. (2024). Real-time soil monitor-
ing sensors in precision agriculture. Vigyan Varta, 5(6),
194-197. (No DOI available)

Bassine, F. Z.,Epule Epule, T., Kechchour, A,
& Chehbouni, A. (2023). Recent applications of machine
learning, remote sensing, and loT approaches in yield
prediction: A critical review. arXiv. https://
doi.org/10.48550/arXiv.2306.04566

Batz, P., Will, T., Thiel, S., Ziesche, T. M., & Joachim, C.
(2023). From identification to forecasting: the potential of
image recognition and artificial intelligence for aphid pest

monitoring. Frontiers in Plant Science, 14, 1150748.
https://doi.org/10.3389/fpls.2023.1150748
Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic,

S., Boualem, S., & Mimi, M. (2023). Deep learning for
plant diseases: Detection and diagnosis based on visual
symptoms. Plants, 12(3), 589. https://doi.org/10.3390/
plants12030589

Bueno, V., Gao, X., Abdul Rahim, A., Wang, P., Bayen,
S., & Ghoshal, S. (2022). Uptake and translocation of a
silica nanocarrier and an encapsulated organic pesticide
following foliar application in tomato plants. Environmental
Science & Technology, 56(10), 6722-6732. https://
doi.org/10.1021/acs.est.1c08185

Campos, E. V., Ratko, J., Bidyarani, N., Takeshita, V., &
Fraceto, L. F. (2023). Nature-based herbicides and micro-/
nanotechnology fostering sustainable agriculture. ACS
Sustainable Chemistry & Engineering, 11(27), 9900-9917.
https://doi.org/10.1021/acssuschemeng.3c02282
Céarcamo, H., Herle, C., Schwinghamer, T., Robinson, S.,
Reid, P., Gabert, R. K., ... & Costamagna, A. C. (2024).
Revising economic injury levels for Lygus spp. in canola:
The value of historical yield and insect data to improve
decision making. Crop Protection, 176, 106467. https://
doi.org/10.1016/j.cropro.2023.106467

Chaudhary, A., & Singh, P. (2025). Integrating loT sen-
sors and machine learning for sustainable precision
agroecology. Discover  Agriculture, 3, 83. https://
doi.org/10.1007/s44279-025-00247-y.

Chen, F., et al. (2023). Empowering agrifood system with
artificial intelligence: A survey of the progress, challenges
and opportunities. arXiv. Available at: (arXiv:2305.01899).
da Silva, P. R,, Istchuk, A. N., Foresti, J., Hunt, T. E., de
Araujo, T. A., Fernandes, F. L., ... & Bastos, C. S. (2021).
Economic injury levels and economic thresholds for Dic-
eraeus (Dichelops) melacanthus (Hemiptera: Pentatomi-
dae) in vegetative maize. Crop Protection, 143, 105476.
https://doi.org/10.1016/j.cropro.2020.105476

Dawn, N., et al. (2025). Implementation of artificial intelli-
gence, machine learning, and Internet of Things (IoT) in
revolutionizing agriculture: a review on recent trends and
challenges. Springer Precision Agriculture Journal. https://

1416


https://doi.org/10.1155/2025/6632234
https://doi.org/10.1007/s44430-025-00006-0
https://doi.org/10.48550/arXiv.2306.04566
https://doi.org/10.48550/arXiv.2306.04566
https://doi.org/10.1007/s44279-025-00247-y
https://arxiv.org/abs/2305.01899

Fiza, S. et al. / J. Appl. & Nat. Sci. 17(3), 1409 - 1419 (2025)

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

doi.org/10.1007/s44430-025-00006-0 SpringerLink
Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F.,
Wyckhuys, K. A., & Ratnadass, A. (2021). Integrated pest
management: good intentions, hard realities. A re-
view. Agronomy for Sustainable Development, 41(3), 38.
https://doi.org/10.1007/s13593-021-00689-w

Ding, W., & Taylor, G. (2016). Automatic moth detection
from trap images for pest management. Computers and
Electronics  in  Agriculture, 123, 17-28.  https://
doi.org/10.1016/j.compag.2016.02.003

Doe, J., & Smith, A. (2023). Applications of Artificial Intel-
ligence in Pest Management: Detection and Identification
Techniques. Journal of Pest Management, 15(2), 78-89.
https://doi.org/10.1201/9781003311782

Eze, V. H. U., Eze, E. C., Alaneme, G. U., Bubuy, P. E.,
Nnadi, E. O., & Okon, M. B. (2025). Integrating loT sen-
sors and machine learning for sustainable precision
agroecology. Discover Agriculture, 3, Article 83. https://
doi.org/10.1007/s44279-025-00247-y

Ferentinos, K. P. (2018). Deep learning models for plant
disease detection and diagnosis. Computers and Elec-
tronics in Agriculture, 145, 311-318. https://
doi.org/10.1016/j.compag.2018.01.009

Gupta, D. K., Kumar, A., Madake, P. N, Singh, V.
K., Chauhan, G. V., Priya, N. K., & others. (2025). A role
of drones and satellite images in agricultural extension:
Enhancing crop monitoring and sustainable resource
use. International Journal of Agriculture Extension and
Social Development, 8(3), 1-14. https://
doi.org/10.33545/26180723.2025.v8.i3a.1669

Gutiérrez, J., Sanchez, L., Martinez, P., & Pérez, A.
(2024). Digital twins in agriculture: Orchestration and ap-
plications. Sensors, 24(3), 11100011. https://
doi.org/10.3390/s2403111000

Hadi, M. K., Kassim, M. S. M., & Wayayok, A. (2021).
Development of an automated multidirectional pest sam-
pling detection system using motorized sticky traps. IEEE
Access, 9, 67391-67404. https://doi.org/10.1109/
ACCESS.2021.3074083

Hafeez, A., Husain, M. A, Singh, S. P., Chauhan, A.,
Khan, M. T., Kumar, N., ... & Soni, S. K. (2023). Imple-
mentation of drone technology for farm monitoring & pesti-
cide spraying: A review. Information processing in Agricul-
ture, 10(2), 192-203. https://doi.org/10.1016/
j-inpa.2022.02.002

Hanif, M. K., Khan, S. Z., & Bibi, M. (2022). Applications
of artificial intelligence in pest management. In Artificial
Intelligence and Smart Agriculture Applications (pp. 277-
300). Auerbach Publications. https://
doi.org/10.1201/9781003311782

Hinojosa-Davalos, J., Robles-Garcia, M. A., Gutiérrez-
Lomeli, M., Flores Jiménez, A. B., & Acosta Lua, C.
(2025). Neural network-guided smart trap for selective
monitoring of nocturnal pest insects in agricul-
ture. Agriculture, 15(14), 1562. https://doi.org/10.3390/
agriculture15141562

Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J.
L., He, F., & Rico, C. M. (2021). Foliar application of nano-
particles: mechanisms of absorption, transfer, and multiple
impacts. Environmental Science: Nano, 8(5), 1196-1210.
https://doi.org/10.1039/DOEN01129K

Hunter Ill, J. E., Gannon, T. W., Richardson, R. J.,

34.

Yelverton, F. H., & Leon, R. G. (2020). Integration of re-
motel'weed mapping and an autonomous spraying un-
manned aerial vehicle for site[ispecific weed manage-
ment. Pest Management Science, 76(4), 1386-1392.
https://doi.org/10.1002/ps.5651

Igbal, Z., Khan, M. A., Sharif, M., Shah, J. H., ur Rehman,
M. H., & Javed, K. (2018). An automated detection and
classification of citrus plant diseases using image pro-
cessing techniques: A review. Computers and electronics
in  agriculture, 153,  12-32.  https://doi.org/10.1016/
j.compag.2018.07.032

35-Kamilaris, A., & Prenafeta-Boldu, F. X. (2018). Deep

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

learning in agriculture: A survey. Computers and electron-
ics in agriculture, 147, 70-90. https://doi.org/10.1016/
j.compag.2018.02.016

Kanwal, S., Khan, M. A., Saleem, S., Tahir, M. N,,
Muntaha, S. T., Samreen, T., ... & Shahzad, B. (2022).
Integration of precision agriculture techniques for pest
management. Environmental Sciences Proceedings, 23
(1), 19. https://doi.org/10.3390/environsciproc2022023019
Karthikeyan, L., Srinivasan, R., Zhang, B., & Dabrowski,
M. (2023). Remote sensing-based crop monitoring for
market forecasting and food security. Sustainability, 15
(14), 11245. https://doi.org/10.3390/su151411245

Khan, N., Kumar, S., Singh, P., & Verma, R. (2025). Al
roles in “4R” crop pest management: Recognition, real-

time monitoring, risk prediction and right ac-
tion. Agronomy,  15(7),  1629. https://doi.org/10.3390/
agronomy15071629

Kour, R., Charalampopoulos, D., Sadeghioon, S., et al.
(2025). The loT and Al in agriculture: The time is now—A
systematic review (policy, data ownership and adop-
tion). Sensors, 25, 12196926. https://doi.org/10.3390/
25010123

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan,
A. A, & Kim, K. H. (2019). Nano-based smart pesticide
formulations: Emerging  opportunities  for  agricul-
ture. Journal of Controlled Release, 294, 131-153. https://
doi.org/10.1016/j.jconrel.2018.12.012

Lang, C., Mission, E. G., Fuaad, A. A. H. A., & Shaalan,
M. (2021). Nanoparticle tools to improve and advance
precision practices in the Agrifoods Sector towards sus-
tainability-A review. Journal of Cleaner Production, 293,
126063. https://doi.org/10.1016/j.jclepro.2021.126063
0959-6526/©2021.

Li, C., Liu, M, Chen, S., &Fang, Q. (2024). Big data
analytics and artificial intelligence in agricultural price
prediction. Agricultural Systems, 215, 104557. https://
doi.org/10.1016/j.agsy.2024.104557

Li, S., He, Y., Guo, R., Zhao, Y., & Ma, J. (2025). Deep
learning-based agricultural pest monitoring and classifica-
tion using IP102. Scientific Reports, 15, 92659. https://
doi.org/10.1038/s41598-025-92659-4

Li, W., Wang, D., Li, M., Gao, Y., Wu, J., & Yang, X.
(2021). Field detection of tiny pests from sticky trap imag-
es using deep learning in agricultural green-
house. Computers and Electronics in Agriculture, 183,
106048. https://doi.org/10.1016/j.compag.2021.106048
Liakos, K. G., Busato, P., Moshou, D., Pearson, S,
& Bochtis, D. (2018). Machine learning in agriculture: A
review. Sensors, 18(8), 2674. https://doi.org/10.3390/
s18082674

1417


https://doi.org/10.3390/agronomy15071629
https://doi.org/10.3390/agronomy15071629

Fiza, S. et al. / J. Appl. & Nat. Sci. 17(3), 1409 - 1419 (2025)

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Liu, L., Cheng, W., & Kuo, H.-W. (2025). A Narrative Re-
view on Smart Sensors and loT Solutions for Sustainable
Agriculture and Aquaculture Practices. Sustainability, 17
(12), 5256. https://doi.org/10.3390/su17125256

Ma, J., Cheng, Z., & Cao, Y. (2025). Artificial Intelligence-
Assisted Breeding for Plant Disease Re-
sistance. International Journal of Molecular Sciences, 26
(11), 5324. https://doi.org/10.3390/ijms26115324MDPI
review. (2024). Artificial Intelligence-Assisted Breeding for
Plant Disease Resistance. International Journal of Molec-
ular Sciences, 26(11), 5324. https://doi.org/10.3390/
ijms26115324

Malik, N. N., Alosaimi, W., Uddin, M. I., Alouffi, B., & Al-
yami, H. (2020). Wireless sensor network applications in
healthcare and precision  agriculture. Journal  of
Healthcare  Engineering, 2020(1), 8836613. https://
doi.org/10.1155/2020/8836613

Mansoor, S., Igbal, S., Popescu, S. M., Kim, S. L., Chung,
Y. S., & Baek, J.-H. (2025). Integration of smart sensors
and loT in precision agriculture: Trends, challenges and
future prospectives. Frontiers in Plant Science, 16, Article
1587869. https://doi.org/10.3389/fpls.2025.1587869
Marinko, J., Blazica, B., Jagrgensen, L. N., Matzen, N.,
Ramsden, M., & Debeljak, M. (2024). Typology for Deci-
sion Support Systems in Integrated Pest Management
and Its Implementation as a Web Application. Agronomy,
14(3), 485. https://doi.org/10.3390/agronomy14030485
Mukherjee, S., Sharma, P., Gupta, R., & Singh, R.
(2024). Smart sensors and smart data for precision agri-
culture. Sensors, 24(8), 2647. https://doi.org/10.3390/
24082647

Nair, S., & Jain, R. (2023). Machine learning approaches
for agricultural commodity price forecasting. Heliyon, 9(5),
e15492. https://doi.org/10.1016/j.heliyon.2023.e15492
Niu, Y., Zhou, W., Zhang, X., & Liu, J. (2023). Intelligent
irrigation management using loT and Al: A comprehensive
review. Computers and Electronics in Agriculture, 205,
107623. https://doi.org/10.1016/j.compag.2023.107623
Oliveira, C. M., Auad, A. M., Mendes, S. M., & Frizzas, M.
R. (2014). Crop losses and the economic impact of insect
pests on Brazilian agriculture. Crop protection, 56, 50-54.
https://doi.org/10.1016/j.cropro.2013.10.022

Olson, D., & Anderson, J. (2021). Review on unmanned
aerial vehicles, remote sensors, imagery processing, and
their applications in agriculture. Agronomy Journal, 113
(2), 971-992. https://doi.org/10.1002/agj2.20595

Pandey, D. K., & Mishra, R. (2024). Towards sustainable
agriculture: Harnessing Al for global food securi-
ty. Artificial  Intelligence  in  Agriculture.  https:/
doi.org/10.1016/j.aiia.2024.04.003

Partel, V., Kakarla, S. C., & Ampatzidis, Y. (2019). Devel-
opment and evaluation of a low-cost and smart technology
for precision weed management utilizing artificial intelli-
gence. Computers and electronics in agriculture, 157, 339
-350. https://doi.org/10.1016/j.compag.2018.12.048

Patel, A., et al. (2025). Precision farming: integrating
GPS, loT, and Al for sustainable crop manage-
ment. Agricultural ~ Systems, 210, 104512. https://
doi.org/10.1016/j.agsy.2025.104512

Patricio, D. I., & Rieder, R. (2018). Computer vision and
artificial intelligence in precision agriculture for grain
crops: A systematic review. Computers and electronics in

60.

61.

62.

63.

64-Raza,

65.

66.

67.

68.

69.

70.

71.

72.

agriculture, 153, 69-81.
ag.2018.08.001

Penca, C., Hodges, A. C., Leppla, N. C., & Cottrell, T. E.
(2020). Trap-based economic injury levels and thresholds
for Euschistus servus (Hemiptera: Pentatomidae) in florida
peach orchards. Journal of Economic Entomology, 113(3),
1347-1355. https://doi.org/10.1093/jee/toaa044

Pinto, C. B., Carmo, D. D. G. D., Santos, J. L. D., Filho, M.
C. P., Soares, J. M., Sarmento, R. A,, ... & Picango, M. C.
(2023). Sampling Methodology of a Key Pest: Technique
and Sampling Unit for Evaluation of Leafhopper Dalbulus
maidis Populations in Maize Crops. Agriculture, 13(7),
1391. https://doi.org/10.3390/agriculture13071391

Preti, M., Verheggen, F., & Angeli, S. (2021). Insect pest
monitoring with camera-equipped traps: strengths and
limitations. Journal of pest science, 94(2), 203-217.
https://doi.org/10.1007/s10340-020-01309-4

Rahman, M., Walia, H., Khan, A., & Bhuiyan, M. (2024).
Intelligent agriculture: Deep learning in UAV-based remote
sensing for crop disease and pest monitoring. Frontiers in
Plant  Science, 15, 1435016. https://doi.org/10.3389/
fpls.2024.1435016

M. Q. Farooq, M., Ahmad, N., & Shahzad,
A. (2023). Al-powered precision irrigation: Current trends,
challenges, and opportunities. Sustainability, —15(4),
3562. https://doi.org/10.3390/su15043562

Rossi, V., Caffi, T., Salotti, |., & Fedele, G. (2023). Sharing
decision-making tools for pest management may foster
implementation of Integrated Pest Management. Food
Security, 15(6), 1459-1474. https://doi.org/10.1007/
s$12571-023-01402-3

Rydhmer, K., Bick, E., Still, L., Strand, A., Luciano, R.,
Helmreich, S., ... & Nikolajsen, T. (2022). Automating in-
sect monitoring using unsupervised near-infrared sen-
sors. Scientific Reports, 12(1), 2603. https://
doi.org/10.1038/s41598-022-06439-6

Scheff, D. S., & Phillips, T. W. (2022). Integrated pest
management. In Storage of Cereal Grains and Their Prod-
ucts (pp. 661-675). Woodhead Publishing. https://
doi.org/10.1016/B978-0-12-812758-2.00002-7
Shanmugasundaram, N., Kumar, G. S., Sankaralingam,
S., Vishal, S., & Kamaleswaran, N. (2023, March). Smart
agriculture using modern technologies. In 2023 9th Inter-
national Conference on Advanced Computing and Com-
munication Systems (ICACCS) (Vol. 1, pp. 2025-2030).
IEEE. https://doi.org/10.1109/ICACCS57279.202 3.1011
3059

Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020).
Machine learning applications for precision agriculture: A
comprehensive review. |[EEe Access, 9, 4843-4873.
https://doi.org/10.1109/ACCESS.2020.3048415

Sharma, S. (2023). Precision Agriculture: Reviewing the
Advancements Technologies and Applications in Preci-
sion Agriculture for Improved Crop Productivity and Re-
source Management. Reviews in Food and Agriculture, 4
(2), 45-49. http://doi.org/10.26480/rfna.02.2023.41

Singh, M., Vermaa, A., & Kumar, V. (2023). Geospatial
technologies for the management of pest and disease in
crops. In Precision Agriculture (pp. 37-54). Academic
Press. https://doi.org/10.1016/B978-0-443-18953-1.00002-7
Streich, J., Romero, J., Gazolla, J. G. F. M., Kainer, D.,
Cliff, A., Prates, E. T., ... & Harfouche, A. L. (2020). Can

https://doi.org/10.1016/j.comp

1418


https://doi.org/10.3390/su17125256
https://doi.org/10.3390/ijms26115324
https://doi.org/10.1155/2020/8836613
https://doi.org/10.1155/2020/8836613
https://doi.org/10.3389/fpls.2025.1587869
https://doi.org/10.3390/agronomy14030485
http://doi.org/10.26480/rfna.02.2023.41

Fiza, S. et al. / J. Appl. & Nat. Sci. 17(3), 1409 - 1419 (2025)

73.

74.

75.

76.

77.

78.

exascale computing and explainable artificial intelligence
applied to plant biology deliver on the United Nations
sustainable development goals?. Current opinion in bio-
technology, 61, 217-225. https://doi.org/10.1016/j.copb
i0.2020.01.010

Suman, S., Yadav, S., Kumar, R., & Meena, R. S.
(2023). Application of precision agriculture technologies
for sustainable crop production. Agricultural Systems,
211, 103672. https://doi.org/10.1016/j.agsy.2023.103672

Sun, Y., Liu, X., Yuan, M., Ren, L., Wang, J., & Chen, Z.
(2018). Automatic in-trap pest detection using deep learn-
ing for pheromone-based Dendroctonus valens monitor-
ing. Biosystems engineering, 176, 140-150. https://
doi.org/10.1016/j.biosystemseng.2018.10.012

Uzhinskiy, A. (2023). Advanced technologies and artificial
intelligence in agriculture. AppliedMath, 3(4), 799-813.
https://doi.org/10.3390/appliedmath3040043

Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-
Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-
enabled pesticides for sustainable agriculture and global
food security. Nature nanotechnology, 17(4), 347-360.
doi:10.1038/s41565-022-01082-8.

Wang, G., Xu, X., Cheng, Q., Hu, J., Xu, X., Zhang, Y.,
... & Su, C. (2023). Preparation of sustainable release
mesoporous silica nano-pesticide for control of Monocha-
mus alternatus. Sustainable Materials and Technolo-
gies, 35, e00538. https://doi.org/10.1016/j.susmat.2022
e00 538

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J.
(2017). Big data in smart farming—a review. Agricultural

79.

80.

81.

82.

83.

84.

systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.0
1.023

Zaman, Q. U. (2023). Precision agriculture technology: A
pathway toward sustainable agriculture. In Precision Agri-
culture (pp. 1-17). Academic Press. https://
doi.org/10.1016/B978-0-443-18953-1.00013-1

Zhai, Y., Zhang, C., Wang, S., & Liu, Y. (2023). Digital
twin system of pest management driven by data- and
model-fusion. Agriculture, 14(7), 1099. https://doi.org/1
0.3390/agriculture14071099

Zhang, H., Li, Y., Wang, X., & Sun, J. (2024). Al-driven
market forecasting in agriculture: Integrating machine
learning and economic models. Computers  and
Electronics in  Agriculture, 213, 108614. https://
doi.org/10.1016/j.compag.2023.108614

Zhang, J. H., Kong, F. T., Wu, J. Z., Han, S. Q., & Zhai, Z.
F. (2018). Automatic image segmentation method for cot-
ton leaves with disease under natural environ-
ment. Journal of Integrative Agriculture, 17(8), 1800-1814.
https://doi.org/10.1016/S2095-3119(18)61915-X

Zhang, X., Wu, Y., Chen, L., Huang, J., & Liu, Q. (2025).
Research on a machine-vision-based electro-killing phero-
mone trap for agricultural pests. Frontiers in Plant Sci-
ence, 16, 1521594. https://doi.org/10.3389/fpls.2025.152
1594

Zhao, X., Wang, Y., Li, D., & Yang, G. (2024). Intelligent
pest and disease recognition in agriculture using Al-based
image analysis. Computers and Electronics in Agriculture,
213, 108546. https://doi.org/10.1016/j.compag.20 23 .108
546

1419


https://doi.org/10.1016/j.agsy.2023.103672

