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INTRODUCTION 

 

 Integrated pest management (IPM), is a comprehen-

sive strategy that guarantees efficient, ecologically 

friendly, and socially conscious pest control. Food pro-

duction is improved, farmer revenues are increased, 

and the ecological effect is reduced. Limited farmer 

involvement and knowledge of IPM principles, however, 

continue to be problems. The impact of global trade, 

consumer demands for sustainable food, and techno-

logical advancements are all incorporated into a mod-

ernized IPM model to address these gaps (Angon et 

al., 2023). Identification of pest control options, utiliza-

tion of resources and expertise, facilitation of data-

driven decision-making, and promotion of broad adop-

tion through outreach are important elements. This 

strategy promotes a sustainable food system by strik-

ing a balance between environmental, social, and eco-

nomic concerns. Agriculture can become more sustain-

able, raise farmer incomes, and increase global food 

security by rearranging IPM (Rossi et al., 2023; 

Deguine et al., 2021). 
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Insect pests pose a serious threat to agricultural production and food security, accounting for 30–40% of yearly crop losses 
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Use of nanopesticides in integrated pest manage-

ment 

In comparison with traditional pesticide formulations, 

nanopesticides may offer several benefits, including 

enhanced effectiveness, reduced environmental impact, 

and targeted delivery to specific pests or plant tissues 

(Scheff et al., 2022). For instance, the stability, solubili-

ty, and controlled release of pesticide active compo-

nents can be enhanced by nanoencapsulation, which 

reduces the quantity of pesticide required and minimiz-

es off-target effects (Kumar et al.,2019) Moreover, pes-

ticides can be more effectively and locally controlled by 

using nanoformulations to improve their translocation 

and penetration into plant tissues (Wang et al., 2022; 

Arcot, et al., 2024). Innovative pest management op-

tions are provided by nanopesticides, which combine 

nanomaterials such as silica, titanium dioxide, lipid-

based carriers, and polymeric nanoparticles. The use of 

pesticides has decreased significantly, and pest man-

agement has improved thanks to Integrated Pest Man-

agement (IPM) techniques, which include the use of 

resistant cultivars, such as Bt cotton. Insect resistance 

concerns, however, emphasize the necessity of effec-

tive resistance control. To guarantee that pest manage-

ment methods are economical and avoid overusing 

pesticides while preserving crop health and sustainabil-

ity, IPM frameworks rely on Action Thresholds (ATs) 

and Economic Injury Levels (EILs) (Lang et al., 2021; 

Campos et al., 2023; Bueno et al., 2022). 

 

Monitoring and decision making 

Techniques for scouting and sampling are essential 

components of IPM programs' monitoring and decision-

making processes (Hong et al., 2021; Wang et al., 

2023).In addition to these sampling approaches, sever-

al instruments and methods are used to track pest pop-

ulations and the damage they cause to crop plants. 

These methods include visual inspection, the use of 

sweep nets, sticky traps, pheromone traps, and remote 

sensing technologies (Pinto et al., 2023; Singh et al., 

2023).  

Unmanned aerial vehicles (UAVs), satellite imaging, 

and aerial photography are examples of remote sensing 

techniques that are being utilized more and more to 

track crop health and identify insect outbreaks on a 

wide geographic scale (Hadi et al., 2021; Rydhmer et 

al., 2022; Olson et al., 2021). 

IPM practitioners are empowered to make data-driven 

decisions about the necessity and timing of pest control 

actions by integrating various monitoring tools and 

methodologies with suitable sampling designs. IPM has 

recently leveraged the development of artificial intelli-

gence (AI) for identification and decision-making. Ac-

cording to Batz et al., AI can enhance aphid pest fore-

casting in several ways. 1) optimal insect identification 

using image recognition and deep learning, 2) forecast-

ing model based on neural networks and machine 

learning, and 3) monitoring infrastructure optimization 

to enhance predictive models (Hunter III et al., 2020). 

In IPM decision-making, action thresholds (ATs) and 

economic injury levels (EILs) are crucial instruments 

(Hafeez et al., 2023; Batz et al., 2023; da Silva et al., 

2021). When pest control procedures are economically 

justified, they help farmers and pest management ex-

perts make that determination. ATs are set at a lower 

pest density to keep populations from reaching the EIL, 

whereas EILs reflect the pest population density at 

which the cost of crop damage equals the cost of man-

agement (Cárcamo et al., 2024; Penca et al., 2020; da 

Silva et al., 2021). 

One of the main causes of agricultural harm worldwide 

is recognized to be insect pests. Agricultural losses can 

be reduced by managing and preventing insect pests 

(Cárcamo et al., 2024). This activity requires accurate 

detection and classification of insect pests to distin-

guish between species, estimate the quantity of pest 

management equipment needed, and identify the vari-

ous host species (Penca et al., 2020). Interest in auto-

matic insect pest recognition has grown recently since 

this activity requires costly, continuous monitoring. The 

traditional approach to insect pest monitoring relies on 

subject matter specialists to manually identify, which is 

labour-intensive, prone to error, and applicable to a 

wider range of applications (Ahmed et al., 2018; 

Oliveira  et al., 2014; Ding et al., 2016). Additionally, 

the careless use of pesticides frequently has the unin-

tended consequence of harming ecosystems and bene-

ficial organisms. AI offers a revolutionary solution to 

these problems, enabling the implementation of target-

ed treatments that maximize effectiveness while mini-

mizing ecological impacts (Li et al., 2021; Sun et al., 

2018; Sharma et al., 2020). A new approach to auto-

matic pest detection and monitoring in contemporary 

agriculture is provided by implementing AI through 

computer vision that is integrated with cameras and 

internet connections. This significantly enhances the 

effectiveness of insect surveillance in agricultural sys-

tems (Preti et al., 2021). 

 

Artificial Intelligence (AI) powered pest manage-

ment: Revolutionizing forestry and agriculture 

The field of pest management in forestry and agricul-

ture has become a promising area for the successful 

application of AI technology, providing innovative solu-

tions that are more accurate, efficient, and environmen-

tally friendly (Streich et al., 2020). AI-related theories 

and technologies, such as Smart Pest Monitoring 

(SPM), have emerged as a new scientific area within 

Integrated Pest Management (IPM) due to the rapid 

advancement of Artificial intelligence in research (Partel 

et al., 2019). By combining artificial crops intelligence 

(AI), the Internet of Things (IoT), big data, and other 
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modern information technologies and tools, the SPM 

seeks to improve the ability of pest monitoring and ear-

ly warning while also advancing the autonomous and 

intelligent data gathering of important insect pests (Li et 

al., 2021). The decision-making process regarding 

management actions, such as pesticide spraying and 

other procedures, is aided by the identification and de-

tection of insects to count and analyze their density 

using relevant theories (Iqbal et al., 2018). Machine 

learning, computer vision, and data analytics are just a 

few of the many techniques that comprise artificial intel-

ligence (AI), enabling the analysis of large, complex 

datasets. By improving precision and forecasting accu-

racy, this capacity offers a previously unheard-of bene-

fit in addressing pest-related difficulties (Patrício et al., 

2018). Artificial intelligence and pest management, 

when combined, have the potential to minimize ecologi-

cal impact, optimize resource use, and reduce depend-

ency on chemical treatments (Doe et al., 2023). Artifi-

cial intelligence in pest management has a promising 

future, but several obstacles remain to be overcome, 

including concerns about data privacy, legal compli-

ance, and the need for multidisciplinary cooperation 

among disciplines such as computer science, ecology, 

and agronomy (Hanif et al., 2022). 

To ensure broad benefits across various agricultural 

landscapes, it is also crucial to verify fair access to Arti-

ficial intelligence technology for small-scale farmers 

and areas with limited resources (Uzhinskiy et al., 

2023). The application of Artificial intelligence has great 

promise for transforming the control of insect pests in 

horticulture, forestry, and agriculture. Stakeholders can 

successfully mitigate pest risks, enhance productivity, 

and promote environmental sustainability in food and 

fibre production systems by leveraging AI-driven in-

sights and solutions (Pandey et al., 2024). The security 

of global food systems can be ensured while reducing 

their ecological footprint by utilizing AI to transform pest 

control from a reactive to a proactive and intelligent 

approach (Kanwal et al., 2022).This review examines 

the various facets of AI's role in pest management. 

Through an analysis of technical developments, this 

investigation examines the benefits and limitations of 

AI, as well as how AI-driven systems support sustaina-

ble agricultural practices, early pest identification, and 

informed decision-making. 

 

Artificial intelligence in modern agriculture: En-

hancing sustainability and productivity 

The foundation of human civilization, agriculture has 

provided food, raw materials, and employment. Howev-

er, it faces numerous challenges today, including re-

source management, pest infestations, climate change, 

and soil degradation. Artificial Intelligence (AI) has 

emerged as a transformative force in agriculture, help-

ing farmers increase sustainability, reduce costs, and 

optimize productivity. Artificial Intelligence is catego-

rized using various methods, including functionality, 

learning methodology, and application domain. First, 

the Artificial intelligence was separated into two main 

divisions according to its functionality: narrow AI (weak 

AI), which handles one or a small number of tasks. It 

lacks overall intelligence, despite being quite good at 

what it does. Virtual assistants, picture recognition sys-

tems, and recommendation algorithms are a few exam-

ples. Weak AI is frequently utilized in modern farming 

to perform specialized tasks, including yield prediction, 

insect control, and crop monitoring. Sensors, big data 

analytics, and machine learning algorithms are the 

foundation of its operation (Zhang et al., 2018). 

 

Weak Artificial intelligence (Weak AI or Narrow AI) 

in agriculture 

Agriculture is one of the most critical sectors for ensur-

ing food security and economic stability worldwide. 

Farmers, however, face various challenges, including 

climate change, soil erosion, water shortages, and un-

stable market demands (Wolfert et al., 2017). AI, spe-

cifically Weak AI, has become a revolutionary force, 

streamlining farming operations through data-driven 

insights and automation. The use of Artificial Intelli-

gence (AI) in contemporary agriculture has led to sig-

nificant improvements in efficiency, precision, and sus-

tainability. Weak AI (Narrow AI), created for a single 

purpose, has been instrumental in automation, predic-

tive analysis, and real-time decision-making in agricul-

ture. This report examines the applications, benefits, 

and drawbacks of Weak AI in agriculture, supported by 

empirical examples and scholarly research.  

Weak AI systems are tailored to particular tasks, in-

cluding: 

 

Precision farming (soil health and crop monitoring)  

To enhance maximum soil health and crop observation 

for increased agricultural performance, precision farm-

ing makes use of advanced technologies such as re-

mote sensing, GPS mapping, Internet of Things (IoT) 

sensors, and artificial intelligence (Patel et al., 2025). 

Using soil sensors to gauge critical properties such as 

moisture levels, pH levels, and nutrient levels in real-

time, farmers can effectively control fertilizer and irriga-

tion (Bandgar & Biradar, 2024). Drone and satellite 

imagery high-resolution data deliver crop health infor-

mation that can detect stressors like pest attack, nutri-

ent deficiencies, and water stress before they intensify 

(Gupta et al., 2025). Based on the analysis of such 

data, machine learning models deliver forecasted infor-

mation that supports targeted interventions that have 

reduced environmental footprints, higher yields, and 

less waste (Bassine et al., 2023). Aside from boosting 

productivity, this data-driven approach encourages 

sustainable agriculture through resource conservation 
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and reducing excessive chemical use, ensuring long-

term ecosystem and soil fertility stability in the end. 

 

 Pest and disease identification (image recognition 

and predictive analytics) 

A novel technique for detecting pests and diseases 

using machine learning, computer vision, and artificial 

intelligence (AI) to detect and manage agricultural 

threats is image recognition and predictive analytics 

(Zhao et al., 2024). Through deep learning models, 

including convolutional neural networks (CNNs), image 

recognition technology examines crop images and em-

ploys morphological characteristics, color variations, 

and visual patterns to detect pests or diseases (Brahimi 

et al., 2023). For improved accuracy and adaptability 

across numerous plant species and weather conditions, 

such systems are often taught big datasets that have 

thousands of labeled images (Ferentinos, 2018). Pre-

dictive analytics, by contrast, applies real-time sensor 

readings, past data, and weather patterns to predict the 

probability of disease occurrence or insect infestations 

(Kamilaris & Prenafeta-Boldú, 2018). When combined, 

both technologies enable early warnings to farmers and 

agricultural experts, allowing them to adopt preventive 

measures like crop rotation, precision pesticide applica-

tion, or biological pest control. This combination con-

serves loss of crops, decreases the use of chemicals, 

and promotes sustainable agriculture practices, in addi-

tion to enhancing precision in pest and disease control. 

To smallholder farmers and large agribusinesses, this 

technology is accessible and scalable because of real-

time monitoring facilitated by mobile apps and drone 

surveillance systems with AI-based recognition plat-

forms. Accuracy, efficiency, and integration of the iden-

tification of pests and diseases with intelligent farming 

ecosystems will all grow in the future as the study of AI 

models and data collection continues. 

 

Intelligent irrigation (Efficiency in using water) 

By merging intelligent technology such as artificial intel-

ligence (AI), data analysis, and the Internet of Things 

(IoT), smart irrigation is an innovative approach that 

optimizes water utilization in agriculture (Niu et al., 

2023). Because of overuse, inefficient dispensation, 

and insufficient real-time tracking, conventional irriga-

tion methods are prone to wastage of water. These 

problems are fixed by smart irrigation systems, which 

employ remote sensing, weather forecasting, and soil 

moisture sensors to accurately calculate the right quan-

tity of water crops need at any time (Adeyemi et al., 

2024). In order to automate watering schedules and 

have water supplied efficiently and only when required, 

AI-based algorithms interpret real-time data about the 

soil, water needs of plants, and climatic conditions 

(Raza et al., 2023). Additionally, monitoring through 

drones and satellite images are able to analyze plant 

health by determining the levels of stress that point to-

wards excessive moisture or deficiency of water (Patel 

et al., 2025). Smart irrigation optimizes crop yields in 

agriculture, minimizes erosion of the soil, and saves 

energy for pumping and distribution, while also saving a 

precious resource by reducing water wastage and opti-

mizing distribution. Applying intelligent irrigation sys-

tems is increasingly vital for sustainable and resilient 

agriculture as worries about water shortage and climate 

change grow. 

 

Market forecasting (examining market trends for 

more informed pricing) 

Producers, suppliers, and farmers can make informed 

production and price decisions using market forecast-

ing, an important agriculture tool that uses data analyt-

ics, machine learning, and economic models to forecast 

market trends (Zhang et al., 2024). Market forecasting 

assists in anticipating future price movements by study-

ing historic price information, supply and demand fluctu-

ations, shopper behavior, and extrinsic conditions like 

weather conditions, trade policies, and international 

commodity trends (Nair & Jain, 2023). In order to ana-

lyze enormous amounts of real-time data and find pat-

terns and relationships not discernible using traditional 

analysis, sophisticated prediction models use artificial 

intelligence (AI) and big data analytics (Li et al., 2024). 

In addition, satellite imagery and remote sensing have 

the capability to offer current data regarding crop health 

globally, helping in predicting supply shortages or sur-

pluses that affect market prices (Karthikeyan et al., 

2023). Through facilitation of strategic thinking for trade 

regulations and food safety, market forecasting also 

benefits policymakers. Farmers and agribusinesses can 

assist in developing a more stable and efficient agricul-

tural market, reduce financial risks, and boost profitabil-

ity by leveraging technology-based forecasting meth-

ods. 

Although General AI (Strong AI) is still in its theoretical 

phases, Weak AI is already extensively used in actual 

agricultural practices (Kamilaris & Prenafeta-Boldu, 

2018). 

 

Artificial intelligence's revolutionary effect on mod-

ern agriculture 

Artificial intelligence (AI) is transforming contemporary 

agriculture (Liakos et al., 2018; Sharma, 2023). Narrow 

AI already enhances agriculture using predictive model-

ing, automation, and real-time analysis (Kamilaris & 

Prenafeta-Boldú, 2018). AI-driven hardware that max-

imizes irrigation, planting, and crop tracking technolo-

gies includes drones, satellites, IoT sensors, and smart 

tractors from John Deere (Patel et al., 2025). Whereas 

intelligent irrigation systems such as NetBeat enhance 

water efficiency through integrating soil and weather 

information, AI-based pest and disease management 
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AI-Based 

Strategy 

  

Mechanism Of Ac-

tion 

  

Applications 

  

Core Bene-

fits 

  

Examples 

of AI-

Powered 

Tools 

  

Target Insect 

Pest(s) 

  

Support-

ing Refer-

ences 

 Smart Sen-

sor networks 

  In addition to moni-

toring temperature 

and humidity, IoT-

enabled sensors use 

motion, sound, and 

pheromone-based 

traps to identify insect 

activity. 

Pest popula-

tion tracking, 

ongoing field 

surveillance, 

and automat-

ed alerts for 

early pest 

identification 

 Reduced 

pesticide use, 

real-time 

monitoring, 

early identifi-

cation, and 

cheaper ex-

penses. 

 Semios 

(pheromone 

sensors 

powered by 

AI) 

  

  

 
 

 Corn borers, 

fruit flies, and 

codling moths. 

  

 Eze et al., 

2025 

 Automated 

Drones using 

AI and Com-

puter Vision 

  

 Drones and cameras 

using artificial intelli-

gence (AI) take pic-

tures of crops, then 

use image recognition 

to determine the ex-

tent of damage and 

detect the presence 

of pests. 

 Early-stage 

detection, 

mapping of 

affected areas, 

and extensive 

pest identifica-

tion 

  

 

 Minimal crop 

damage, pre-

cision pest 

management, 

and de-

creased reli-

ance on man-

power 

  

 Precision 

Hawk (pest 

monitoring 

via drone) 

  

 Grasshoppers

, armyworms, 

and locusts. 

  

  

  

Bai et al., 

2023 

  AI-Powered 

Automated 

Pest Traps 

 

  

 Smart traps using 

cameras, sensors, 

and artificial intelli-

gence (AI) algorithms 

automatically provide 

data while identifying 

and classifying pests 

they have trapped 

 Analysis of 

population 

density, intelli-

gent pest 

management, 

and non-

chemical pest 

control. 

 Eco-friendly 

approach, 

reduced reli-

ance on pes-

ticides, real-

time pest 

population 

monitoring. 

 Trapview 

(AI-powered 

automated 

pest trap) 

 Stink bugs, 

beetles, and 

fruit flies. 

  

 Hinojosa-

Dávalos et 

al., 2025 

  Big Data & 

Cloud Com-

puting 

 AI provides insights 

into pest manage-

ment by integrating 

data from several 

sources, including 

field sensors, satellite 

 AI-assisted 

pest manage-

ment sugges-

tions and re-

mote pest 

monitoring. 

 Enhanced 

resource effi-

ciency, data-

driven deci-

sion-making, 

and real-time 

risk assess-

ment 

 Climate 

Corporation 

(AI-powered 

disease and 

pest predic-

tion) 

Cutworms, 

Weevils, and 

Thrips. 

  

 Dawn et 

al., 2025 

  

 
Decision 

Support Sys-

tems with AI 

Integration 

(DSS) 

 

 AI-powered systems 

examine pest pat-

terns and recommend 

the best use of pesti-

cides, biological con-

trol techniques, and 

other forms of inter-

vention. 

 Action plans, 

pest alarms, 

and smart 

agricultural 

dashboards 

via mobile 

apps. 

 Lower envi-

ronmental 

impact, more 

economical 

farming, bet-

ter decision-

making, and 

higher agri-

cultural out-

put. 

Plantix (a 

pest detect-

ing mobile 

app) 

  

Leaf miners, 

spider mites, 

and 

caterpillars 

  

 
Marinko 

et al., 2024 

  

 

Pest-

Resistant 

Genetic AI 

Models 

 

AI analyzes plant 

DNA responses to 

pest invasions, which 

helps with genetic 

engineering research 

to create crop varie-

ties resistant to pests. 

Creation of 

crops resistant 

to pests and 

environmental 

friendly pest 

management 

techniques. 

Long-term 

insect re-

sistance, 

decreased 

reliance on 

chemicals, 

and improved 

crop resili-

ence. 

The genetically 

modified pest-

resistant crop 

known as 

BASF's InVigor 

Canola 

Bollworms, 

Stem bor-

ers, 

and root 

maggots 

 

(Ma et al., 

2025 

  

Table 1. Artificial intelligence (AI) based strategies for insect pest management 
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technologies such as Plantix facilitate early diagnosis of 

problems. AI-based market forecasting strengthens 

price forecasts and supply chain management (Zhang 

et al., 2024). General AI can potentially develop im-

proved climate adaption strategies, enhance autono-

mous farming, and aid decision-makers in ensuring the 

sustainability and security of food in the future. AI can 

also result in virtual agronomists for on-the-spot farm-

ing guidance and genetic engineering advancements 

such as CRISPR-based crop modification. AI in agricul-

ture also has tremendous potential for enhancing resili-

ence, sustainability, and efficiency in the future but en-

suring its benefits widely reach will need to address 

cost, accessibility, and ethics concerns. 

 

 Using Precision technology to address global agri-

cultural challenges: Smart farming for a growing 

world 

A revolutionary approach to contemporary agriculture, 

precision ag.  riculture—also referred to as smart farm-

ing or precision farming—has arisen to solve the urgent 

global issues of resource efficiency, environmental sus-

tainability, and food security. Precision agriculture al-

lows farmers to precisely customize inputs and inter-

ventions to meet the demands of individual plants or 

fields by integrating smart sensors to monitor and eval-

uate particular characteristics of crops, soil, and envi-

ronmental conditions. Precision farming has several 

potential advantages. Initially, it promises to drastically 

boost crop yields and overall production while cutting 

down on resource waste (Akaka et al., 2023). In addi-

tion, precision agriculture promotes sustainable and 

ethical agricultural methods by reducing environmental 

effects and maximizing resource utilization (Zaman and 

Q. U., 2023). Moreover, resilience to climatic variability 

is improved by anticipating and adapting to changing 

environmental conditions, which increases the sector's 

capacity to endure the difficulties brought on by global 

climate change. 

 

 Role of Smart sensor technologies in advancing 

modern agriculture 

In a bid to change the way food is produced and cope 

with numerous challenges in the agricultural sector to-

day, smart sensor technologies need to be embraced in 

modern agriculture (Shanmugasundaram et al., 2023). 

These advanced sensors, with their modern capabilities 

and connectivity with cutting-edge technology, offer 

many benefits that underpin stronger, more efficient, 

and sustainable farming practices 

(Shanmugasundaram et al., 2023). Smart sensors  

provide precision, real-time information on key  

areas like crop well-being, nutrient status, soil water, 

and environmental factors (Malik et al., 2020). It state 

that the presence of such precise and timely infor-

mation allows farmers to design their practices exactly 

according to crop needs and make efficient decisions. 

Through precision agriculture practices — where each 

area of the field is managed based on its own require-

ments — farmers can optimize the use of resources, 

minimize waste, and boost total output (Malik et al., 

2020). 

Fig. 1. Precision agriculture enhancing efficiency 
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 Enhancing Agricultural sustainability and climate 

resilience through Smart sensor technologies 

 This minimizes wastage and ensures that inputs are 

used where and when they are most required by facili-

tating targeted use of water, fertilizers, and pesticides 

(Suman et al., 2023). With the world's growing popula-

tion and limited natural resources, efficiency in using 

resources is paramount. Through the provision of pre-

cise scheduling of irrigation, better application of nutri-

ents, and tracking of environment conditions to prevent 

wasteful practices, smart sensors play a crucial role in 

improving resource efficiency (Aarif et al., 2025). Ena-

bling environmentally sound and sustainable agriculture 

by conserving energy, water, and fertilizer, smart sen-

sor technologies are promoted (Aarif et al., 2025). Early 

indication of diseases, pests, and stressors can be 

identified with the help of smart sensors in crop health 

monitoring, allowing prompt action. Rapid detection and 

response to potential threats minimize yield losses and 

prevent disease spread, reducing dependence on 

chemical application while promoting overall crop 

health (Mukherjee et al., 2024). Smart sensors also 

enable the development of climate resilience as climate 

change keeps impacting agricultural productivity. Farm-

ers are able to adjust their practice in accordance with 

changing climatic patterns by tracking weather, soil 

water holding capacity, and other climatic conditions 

(Aarif et al., 2025). 

 

 Leveraging Smart sensor technologies for sustain-

able agriculture and global food security 

 This flexibility ensures consistency in agricultural pro-

duction and enhances the sector's resistance to ex-

treme weather conditions (Chen et al., 2023). Intelligent 

sensors produce voluminous amounts of data which, 

when combined with data analytics and artificial intelli-

gence, offer actionable insights into farm management 

and crop yields optimization (Chaudhary & Singh, 

2025). The analytics allow for trend analysis, predictive 

modeling, and customized recommendations to boost 

agriculture practice and profitability (Ali et al., 2025) 

The development of sensor technology has brought 

about cost-effective and accessible solutions that are 

within the reach of smallholder farmers, giving them 

access to innovative farming methods. Encouraging 

efficient resource use, smart sensors aid in supporting 

sustainability by minimizing chemical use, conserving 

water, and healthier soils (Liu et al., 2025). In addition, 

smart sensors provide for the early detection of pests 

and diseases by providing real-time crop health infor-

mation, allowing instant intervention and minimized use 

of chemical controls (Mansoor et al., 2025). In a world 

with food security and environmental threats, integrat-

ing smart sensor technology in contemporary agricul-

ture is critical to improving productivity, sustainability, 

and resilience. 

Future perspectives 

AI-based pest control is shifting towards edge AI sys-

tems integrated within traps, UAVs, and farm gateways 

to facilitate real-time decision-making without full de-

pendence on cloud computing. Initial tests pairing IoT 

sensors with embedded AI chips have shown fast pest 

detection and intervention functions (Al-Haddad et al., 

2025). At the same time, intelligent pheromone traps 

and UAV-assisted monitoring pipelines are enhancing 

the accuracy of small-insect recognition, making timely 

and targeted pest management possible with minimal 

pesticide application (Zhang et al., 2025; Li et al., 

2025). 

A further developing field is the application of digital 

twins to crop–pest ecosystems—virtual representations 

that combine real-time sensor streams and predictive 

models to model management options prior to applica-

tion in the field (Gutiérrez et al., 2024; Zhai et al., 

2023). Such systems will allow for optimization of inter-

vention timing, resource deployment, and cost–benefit 

planning (Rahman et al., 2024). 

Scaling these technologies, however, involves over-

coming challenges like dataset imbalance, regional 

variability, data governance, and farmer adoption (Kour 

et al., 2025). Solutions lie in federated learning to ena-

ble updates on AI models without raw data transfer, 

explainable AI to foster trust, and human-in-the-loop 

systems that integrate AI analytics with human exper-

tise (Kour et al., 2025; Khan et al., 2025). Combined, 

these advances in edge AI, intelligent monitoring devic-

es, and digital twin technology hold the potential for 

more sustainable, efficient, and responsive pest man-

agement in the future. 

 

Conclusion 

 

 By limiting crop damage, decreasing the environmental 

impact, and optimizing pesticide usage, AI-driven pest 

management enhances efficiency. Precision farming, 

which increases production and sustainability, is made 

possible by smart sensors and predictive analytics. 

Food security and resource optimization rely on AI ad-

vancements, despite ongoing issues such as cost and 

accessibility. AI will propel global agriculture toward a 

more sustainable and effective future as technology 

develops. This review highlights the importance of 

smart sensors in enhancing agricultural sustainability, 

improving production, and optimising resources. Their 

combination of IoT, AI, and data analytics provides cre-

ative answers to problems related to environmental 

preservation and food security. The key to guarantee-

ing broad adoption will be removing implementation 

obstacles via cooperation and information sharing. 

Smart sensors will continue to revolutionise contempo-

rary farming as technology advances, facilitating preci-

sion farming and enabling the development of robust, 
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sustainable food production systems. The combination 

of smart sensor technologies, IoT, AI, and data analyt-

ics has tremendous potential to improve food security 

and environmental sustainability. Widespread ac-

ceptance depends on overcoming implementation ob-

stacles via cooperation and knowledge exchange. 

Through the use of real-time data and sophisticated 

analytics, farmers can enhance yields, optimise re-

source management, and implement more sustainable 

farming practices. Future prospects for precision farm-

ing are enormous, as it promotes increased production, 

enhanced efficiency, and improved resilience. As tech-

nology advances, smart sensors will be crucial in devel-

oping farming systems that are both flexible and sus-

tainable, thereby meeting the demands of a changing 

environment and an expanding global population. 
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