

Journal of Applied and Natural Science

17(2), 509 - 517 (2025)

ISSN: 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org

Research Article

Chilli plants (*Capsicum annuum* L. var Dumay) volatiles induced by *Aphis gossypii* (Hemiptera: Aphididae) and *Spodoptera litura* (Lepidoptera: Noctuidae)

Siska Efendi 🕒

Program Study of Entomology, Faculty of Agriculture, IPB University, Bogor, West Java, Indonesia; Department of Estate Crops Cultivation, Faculty of Agriculture, Andalas University, Padang City, West Sumatra, Indonesia

Dadang*

Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor, West Java, Indonesia

I Wayan Winasa

Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor, West Java, Indonesia

Ali Nurmansyah

Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor, West Java, Indonesia

*Corresponding author. Email: dadangtea@apps.ipb.ac.id

Article Info

https://doi.org/10.31018/ jans.v17i2.6394

Received: November 20, 2024 Revised: April 30, 2025 Accepted: May 07, 2025

How to Cite

Efendi, S. et al. (2025). Chilli plants (*Capsicum annuum* L. var Dumay) volatiles induced by *Aphis gossypii* (Hemiptera: Aphididae) and *Spodoptera litura* (Lepidoptera: Noctuidae). *Journal of Applied and Natural Science*, 17(2), 509 - 517. https://doi.org/10.31018/jans.v17i2.6394

Abstract

Chilli plants respond to injury caused by herbivorous insects by emitting various volatile compounds. Insects that infest have different mouths; the difference in mouth type is thought to influence the volatiles released by plants. This research aimed to identify volatile compounds released by chilli plants (*Capsicum annuum* L. var Dumay) due to infestation by chewing and piercing-sucking insects. Capture of volatile compounds using the Headspace Solid-Phase Micro Extraction (SPME) method. The results showed differences in the composition of volatile compounds released by chilli plants infested by herbivores with different mouth types. Chilli plants not infested by herbivores release as many as 34 compounds. There were 24 volatile compounds released by chilli plants infested by *Aphis gossypii* and 27 compounds infested by *Spodoptera litura*. Infestation by herbivores with different mouth types triggers the synthesis of new compounds. Undecane was the only specific compound produced by chilli plants infested by *A. gossypii* and *S. litura*. In addition, herbivore infests trigger an increase in the proportion of some volatile compounds. The compound with the highest proportion in chilli plants infested by *A. gossypii* was eucalyptol (12.92%), while that infested by *S. litura* was o-xylene (11.77%). Naturally, the volatile substance with the highest proportion was cis-3-hexenyl acetate (21.22%). These findings can be the basis for developing more effective and sustainable pest control strategies and support further understanding plant defence mechanisms against herbivore infestation.

Keywords: Aphis gossypii; eucalyptol; Solid Phase Microextraction; Spodoptera litura

INTRODUCTION

Plants have evolved various mechanisms to interact with the environment by releasing volatile organic compounds (VOCs) from leaves, flowers, and fruits into the atmosphere and roots into the soil. 1700 VOCs have been reported in over 90 plant families (Knudsen *et al.*, 2006). Plant-emitted VOCs' composition and intensity can provide information on the plant's physiological status and its stresses. VOCs in general and herbivore-

induced plant volatile compounds (HIPVs) were key mediators of information transfer (Kessler *et al.*, 2019). When herbivores infest plants, they attract predators and parasitoids of the invading herbivores with a mixture of volatiles that provide information about their location, activity, and even developmental stages. Plant -emitted volatiles can directly act as phytophagous insect repellents (Piesik *et al.*, 2010). Plant volatiles also act as a defence against pathogens. Some VOCs play important physiological roles in coping with abiotic

stress, such as high light intensity (Zuo et al., 2019). VOCs also facilitate intraplant or interplant communication by signalling information about impending danger, either to distant parts of the same plant or to neighbouring plants (Karban et al., 2014). VOCs also mediate interactions between plants and microorganisms (Arimura et al., 2009).

Chillies were also reported to produce different types of volatile compounds. 300 volatile compounds were detected in Capsicum annuum, C. chinense and C. frutescens (Burruezo et al., 2010). 87 volatile compounds from 34 varieties of chilli in Indonesia (Kirana et al., 2021). Volatile released by chillies include the chemical groups esters, alcohols, aldehydes, alkanes, sesquiterpenes, monoterpenes, and ketones. Stress due to herbivore infestation has been proven to affect the volatiles emitted by chilli plants. Chilli pepper (var. Japanese Chao tianjiao) emitted 217 volatile compounds after Myzus persicae infestation (Ali et al., 2022). Chilli cultivar MC11 emitted 20 volatile compounds after being infested with Bemisia tabaci adults (Mansour et al., 2015). Chilli genotype Hybrid green belt (SPHGB) emits 15 volatile compounds after A. gossypii infestation (da Costa et al., 2011). Chilli pepper volatiles are dominated by a mixture of α-pinene, decanal, and phthalic acid after being infested by Myzus persicae (Ali et al., 2022). During the cultivation process, chilli plants were infested by more than one herbivore species, simultaneously or sequentially. Spodoptera litura and Aphis gossypii were the main chilli plant pests in Indonesia. Injury caused by phytophagous insects increases volatile emissions in plants (Santamaria et al., 2018). S. litura was a chewing insect, while A. gossypii was a piercingsucking insect. The type of insect's mouth affects the synthesis of volatile compounds (Riddick, 2020). Phloem sap (aphids) did not cause an increase in corn volatile emissions, while injury caused by stem borer larvae increased volatile emissions (Turlings et al., 1998). Damage caused by the leaf-eating caterpillar H. armigera resulted in stronger induction than A. gossypii. Damage caused by chewing insects is related to the activation of jasmonic acid (JA), while damage caused by phloem sap insects is related to the activation of salicylic acid (SA) (Moran and Thompson, 2001).

Information regarding the semiochemicals produced by chilli plants when infested by *S. litura* and *A. gossypii* has not been widely reported in Indonesia. Likewise with the function of semiochemicals in their interactions with natural enemies. Plant volatile compounds caused by herbivores are often used as olfactory cues by natural enemies, thus having the potential to control agricultural pests. Manipulating volatile organic compounds can improve pest management and help reduce pesticide use (Piesik *et al.*, 2010). The present research aimed to identify the volatile compounds released by chilli due to infested by chewing and sucking mouth-

type insects.

MATERIALS AND METHODS

Chilli plants preparation and insect rearing

Preparation of chilli plants and rearing A. gossypii, and S. litura were in the greenhouse, Department of Plant Protection, IPB University, Bogor, West Java. The chilli used were the Dumay variety. Chilli seeds were planted in polybags (5 cm x 15 cm) until 21 days old. The seedlings were then planted in polyethylene terephthalate (PET) pots. Pest-free conditions (Vijaya et al., 2018). Chilli plants were cultivated until six weeks old and were at the nine- or ten-leaf stage (Saad et al., 2015). The plants were used for insect rearing and volatile trapping. The Aphid species used in this experiment was A. gossypii. Aphid rearing following the method Venkanna and Suroshe (2023). Insect rearing was done by infesting wingless A. gossypii on six-week-old chilli plants. Chilli plants that have been infested with A. gossypii were placed in insect cages (100 cm x 100 cm x 100 cm) under controlled greenhouse conditions (24-30°C; 70-93% relative humidity [RH]). The aphids were provided with new chilli plants weekly (Saad et al., 2015). After a month, aphids emerged in hundreds and were used for subsequent experiments (Sharma et al., 2017). S. litura larvae were collected from chilli fields in Cianjur regency, West Java, Indonesia. Larvae of S. litura were kept in plastic tubs (25 cm diameter) and were provided with fresh chilli leaves in the laboratory under controlled room conditions (22-29°C, RH 82-98%). The larvae were reared individually until pupation (Azam et al., 2016). Male and female pupae were separated and put in different cages for eclosion. The adults were fed with 10% honey water (Wei et al., 2023). Eggs laid by the mature were reared until they hatched, and larvae were reared, using chilli leaves as food, until instar IV. The S. litura used in this experiment was instar III, the most destructive phase (Kundu et al., 2018).

Trapping volatile compounds on chilli plants undamaged

Trapping of volatile compounds using the headspace method. The VOCs emitted by chilli plants were collected using a static-headspace sampling device with a solid-phase microextraction (SPME) (Saad et al., 2015). Trapping used one six-week-old chilli plants planted in a PET pot. Test plants were covered with PET plastic (30 cm x 30 cm). The PET plastic was sufficiently sealed to contain volatile gases and prevent leakage. The PET used has no small holes or leaks that may affect the capture of volatile compounds. In this study, we also used a control, i.e., an empty experiment (with PET enclosure without plants), to ensure that the PET material did not release or absorb volatile

compounds. A Solid Phase Micro Extraction (SPME) holder was installed in the cover hole. The SPME fiber used in this experiment was Supelco (Sigma-Aldrich, Bellefonte, PA, USA) divinylbenzene / carboxen / polydimethylsiloxane (DVB/CAR/PDMS) 2 cm with a polymer thickness of 50/30 μm . The trapping of volatile compounds lasted for 60 minutes (Saad *et al.*, 2015). SPME fiber containing undamaged chilli plants volatiles was injected into the GC-MS.

Trapping volatile compounds on chilli plants infested by *Aphis gossypii*

Volatile capture using chilli plants aged six weeks after planting (Hegde et al., 2011). Two hundred individuals of A. gossypii of mixed stages were infested on chilli plants (Xu et al., 2023; Schettino et al., 2017). Aphids were released and allowed to stand for 1 hour before trapping (Hegde et al., 2011). A. gossypii was infested evenly on bud, young, and old leaves. All insects remained on the plants during experiments (Schettino et al., 2017). The A. gossypii -infested chilli plants were covered with PET plastic (Kigathi et al., 2019). Before covering the surface of the planting medium, it was covered using aluminum foil to reduce the release of pot and soil-derived volatiles (da Costa et al., 2011). The SPME holder installation process followed the previous experiments. In control plants, A. gossypii was not added (Ren et al., 2010). A. gossypii volatiles were also trapped as a control.

Trapping volatile compounds on chilli plants infested by *Spodoptera litura*

Volatiles were collected as described previously by Du et al. (2022); Paré and Tumlinson (1998) with some modifications. S. litura was infested six hours before volatile trapping (Paré and Tumlinson, 1998). S. litura was starved for seven hours before infesting in chilli plants (Kundu et al., 2018). Larvae of third instars were used (Gouinguené et al., 2003). Larvae of S. litura were placed randomly on the leaves (Sun et al., 2021). The S. litura-infested chilli plants were covered with PET plastic (Kigathi et al., 2019). The volatile collections began when insects fed on the leaves (Sun et al., 2021). The SPME holder installation process followed the previous experiments. Fibers were exposed to the sample headspace for 60 min (Du et al., 2022). Five larvae were placed on a plant and were allowed to feed continuously while plants were in the volatile collection apparatus (Paré and Tumlinson, 1998; Sun et al., 2021). For the control plants, no larva was added (Sun et al., 2021).

Identification and quantification of volatile compounds

The identification and quantification of each volatile compound refer to the modified method of Saad et al.

(2015) with some modifications. SPME fibers from each treatment were injected into a GC-MS device (GC 789A, MS 5975C inert XL EI/CI MSD Agilent Technologies Inc., Santa Clara, USA). The SPME device was left for 15 minutes to release all the volatile compounds contained in the fiber into the column. Analytes were separated using a DB-5 MS capillary column (5% diphenyl, column length 30 m x 0.25 mm I.D; film thickness 0.25 mm). Operating conditions were splitless, injector at 240°C with helium carrier gas at a constant flow rate of 0.8 ml/min. The sample running time is 29.167 minutes. The oven temperature setting starts at 40°C, then increases 6°C/minute to 155°C, then increases 25°C/minute to 280°C, and holds at that temperature for 5 minutes. The mass spectrum was recorded at 70 eV electron impact mode (source at 200°C, transfer line at 250°C), and the scanned mass range was 29 to 550 m/z. Detected peaks were identified from their retention data and by comparing the obtained mass spectra with a spectral library. The retention index was determined using standard retention times of n-alkanes (from C_9 to C_{40} , 10 $\mu g/ml$ in n-hexane) and compared with literature values. The relative quantities of each volatile compound were estimated based on its peak area shown by mass spectrometry.

RESULTS AND DISCUSSION

Volatile composition emitted by chilli plants

The number of volatile compounds released by undamaged chilli plants were 34 compounds. The number was more than the chilli plant infested by A. gossypii and S. litura. The total volatiles emitted by chilli plants infested by A. gossypii were 24 compounds, and chilli plants infested by S. litura emitted 27 compounds. Naturally, some plants emit various volatiles without triggers (Dudareva et al., 2004). The difference in the amount of volatiles emitted by undamaged chilli plants compared to those infected by A. gossypii and S. litura was thought to be caused by changes in metabolic and physiological priorities. Insect herbivore infestations trigger defence responses that focus resources on producing specific defence compounds, reducing the diversity of volatiles. Undamaged plants can produce a variety of volatile compounds for various ecological and physiological functions under optimal conditions (Steglińska et al., 2022). In undamaged chilli plants, volatile compounds were not identified in chillies infested by A. gossypii and S. litura, namely decanal, cardene, and 2,5-dimethylstyrene. This shows that the volatile profile of chilli plants had changed in response to infested by A. gossypii and S. litura.

No specific compounds were produced by the chilli plants infested by *A. gossypii* and *S. litura* (Fig. 1). Silva *et al.* (2017) found that quantitative changes were

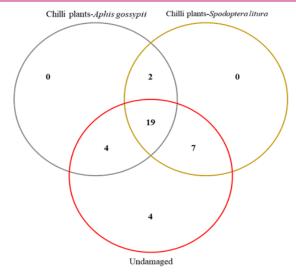
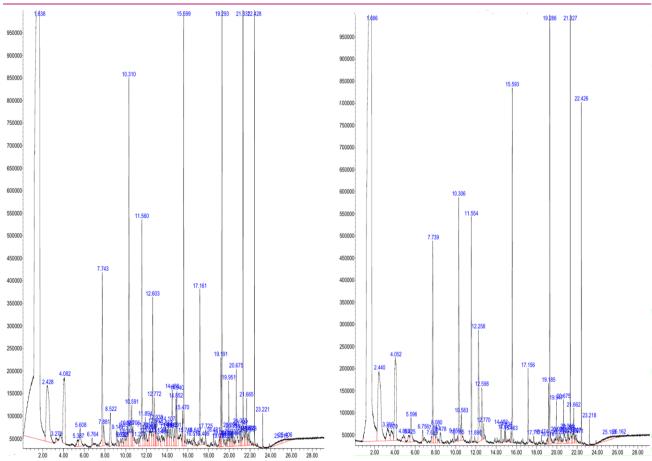


Fig. 1. Composition of the number of volatiles emitted by chilli plants

more common than qualitative changes in plant volatiles infested by herbivores. Plants may rely on quantitative changes in the profile of existing volatile compounds as an adaptive response (Kigathi *et al.*, 2019). Several compounds were only found in undamaged chilli plants and infested by *A. gossypii*, namely prenitol, dodecane, 4-methyl-, 3-ethyl-3-methylheptane, oxylene, 3-ethyl-. The compounds remained present or


increased in proportion in plants infested by *A. gossypii*, indicating that these volatiles played a role in plant defense mechanisms. Some compounds were only found in undamaged chilli plants and infected with *S. litura*, namely cis-3-Hexenyl acetate; m-Xylene; o-Xylene; 3-Ethyltoluene; acetophenone; 2-ethyltoluene; Mesitylene; and Benzene, 1,3-dichloro-. Most of the identified compounds are not reported as chewing-type induced volatiles. Each plant species could synthesize a unique set of volatile compounds.

Volatile compounds emitted by chilli plants infested by *Aphis gossypii*

Eucalyptol (12.92%), 1,2-dimethylindane (12.22%), 4-methyl-1-undecene (6.35%), 2-methyl-1-penten-3-ol (6.15%), p-xylene, 2-ethyl- (5.55%) was the compound with the highest proportion (Table1, Fig. 2). Eighty-seven volatiles were identified in 34 varieties of chilli plants damaged by *Thrips* spp, *S. litura*, and *B. dorsalis*, one of which was eucalyptol (Kirana *et al.*, 2021). Chilli plants infested by *M. persicae* also emit eucalyptol (Saad *et al.*, 2015). Infestation of *A. gossypii* in chilli plants triggers an increase in the proportion of release of several volatile. These volatile compounds were eucalyptol, 2-methyl-1-penten-3-ol, 3-octen-2-ol, 4-methyl-1-undecene, 1-decanol, 2-ethyl-,dodecane, 4-methyl-, 3-ethyl-3-methylheptane, p-xylene, 2-ethyl-, benzene, 1-

Table 1. Compounds identified and relative peak area (%) in the GC chromatogram detected in chilli infested by *Aphis gossypii*

Group	No.	Compound	Relative peak area (%)
Alkenes	1.	4-Methyl-1-undecene	6.35
	2.	2-Methyl-1-penten-3-ol	6.15
	3.	3-Octen-2-ol	4.47
Alcohol	4.	1-Decanol, 2-ethyl-	3.42
Sugar alcohol	5.	Prehnitol	2.53
Aliphatic hydrocarbons	6.	2-Methyldecane	1.35
	7.	Undecane	4.56
	8.	Undecane, 5,7-dimethyl-	2.43
	9.	Dodecane, 4-methyl-	4.94
	10.	3-Ethyl-3-methylheptane	4.71
	11.	Undecane, 3,5-dimethyl-	1.37
	12.	Undecane, 3,7-dimethyl-	2.01
	13.	Undecane, 6-ethyl-	1.31
	14.	Tridecane, 5-methyl-	2.06
	15.	Hexane, 3,3-dimethyl-	1.48
	16.	Tetradecane, 4-methyl-	1.90
	17.	Cetene	1.23
Aromatic hydrocarbons	18.	p-Xylene, 2-ethyl-	5.55
	19.	3,5-Diethyltoluene	3.90
	20.	o-Xylene, 3-ethyl-	3.49
	21.	Benzene, 1-ethyl-2,4,5-trimethyl-	4.34
	22.	Cumene, 3,5-dimethyl-	5.31
	23.	1,2-Dimethylindane	12.22
Terpenoids	24.	Eucalyptol	12.92

Fig. 2. Chromatographic profile of chilli plants infested by Aphis gossypii

ethyl-2,4,5-trimethyl, cumene and 3,5-dimethyl-. Eucalyptol had the highest increase, 0.01% in undamaged plants, to 12.92% in plants infested by *A. gossypii*. Eucalyptol was thought to have an important function in the defense strategy of chilli plants. Rodriguez-Saona and Frost, (2010) reported that high emissions can directly impact herbivores as repellents. In addition, a high proportion of eucalyptol can be a strong signal for predators or parasitoids of *A. gossypii*. *A. gossypii* infestation has been reported to trigger an increase in plant-released volatiles. Damage to cotton plants caused by *A. gossypii* increases heptane, 3-hexenal, and α-copaene compounds (Yasa *et al.*, 2024).

Volatile compounds emitted by chilli plants infested by Spodoptera litura

o-xylene (11.77%), mesitylene (7.99%), 3-ethyltoluene (7.58%), acetophenone (6.52%), cis-3-hexenyl acetate (6.19%) were the volatiles with the highest proportion compared to other compounds in chilli plants infested by *S. litura* (Table 2, Fig. 3). Infestations of chewing insects can trigger higher volatile release. The proportions of the volatile compounds in the chilli plants that increase after an infestation by *S. litura* are m-xylene, o -xylene, and mesitylene. Increased volatile release due to the induction of chewing insects has been reported

Fig. 3. Chromatographic profile of chilli plants infested by Spodoptera litura

in several other plants. Röse and Tumlinson (2004) reported an increase in the release of seven main volatile compounds in cotton plants after an infestation of *Helicoverpa zea*. Piesik *et al.* (2010) found that *Oelema melanopus* infestation caused wheat, barley, and oats to release higher volatile compounds. Chewing insects infest and cause physical damage to plant tissue, triggering metabolic pathways that increase the production and release of volatile compounds as a defense mechanism.

Volatile compounds emitted by undamaged chilli plants

The five volatile compounds with the highest proportion were cis-3-hexenyl acetate (21.22%), o-xylene 3-ethyltoluene (7.57%), acetophenone (11.19%),(7.38%), and p-xylene, 2-ethyl- (4.88%) (Table 3, Fig. 4). Cis-3-hexenyl acetate was also reported in cotton with a relatively high proportion of 14% (Röse and Tumlinson 2004). In addition, Röse and Tumlinson (2004) detected a high proportion of the compound cis-3-Hexenyl acetate 24 hours after H. zea feeding activity. According to Smith and Beck (2015), cis-3-hexenyl acetate is often emitted by undamaged plants. Healthy plants emit low-level volatiles and are released rapidly in response to insect-feeding activity and mechanical

Table 2. Identified compounds and relative peak area (%) on GC chromatogram detected in chilli plants infested by *Spodoptera litura*

Group	No.	Compound	Relative peak area (%)
Alkenes	1.	4-Methyl-1-undecene	3.52
Alcohol	2.	3-Octen-2-ol	3.81
	3.	2-Methyl-1-penten-3-ol	1.57
	4.	1-Decanol, 2-ethyl-	2.56
Ester	5.	cis-3-Hexenyl acetate	6.19
Aliphatic hydrocarbons	6.	2-Methyldecane	2.59
	7.	Undecane	5.97
	8.	Undecane, 5,7-dimethyl-	1.56
	9.	Undecane, 3,5-dimethyl-	1.47
	10.	Undecane, 3,7-dimethyl-	2.01
	11.	Undecane, 6-ethyl-	1.10
	12.	Tridecane, 5-methyl-	2.24
	13.	Hexane, 3,3-dimethyl-	1.58
	14.	Tetradecane, 4-methyl-	2.13
	15.	Cetene	2.20
Aromatic hydrocarbons	16.	m-Xylene	6.02
	17.	o-Xylene	11.77
	18.	3-Ethyltoluene	7.58
	19.	Acetophenone	6.52
	20.	2-Ethyltoluene	4.16
	21.	Mesitylene	7.99
	22.	p-Xylene, 2-ethyl-	3.05
	23.	3,5-Diethyltoluene	2.63
	24.	Benzene, 1-ethyl-2,4,5-trimethyl-	2.81
	25.	Cumene, 3,5-dimethyl-	2.80
	26.	1,2-Dimethylindane	1.53
Terpenoids	27.	Eucalyptol	2.63

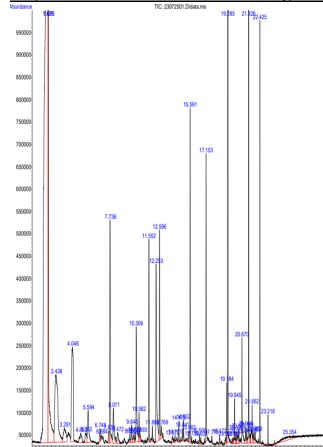


Fig. 4. Chromatographic profile of undamaged chilli plants

damage. Plant production of volatile compounds does not always depend on the presence of stress or damage but can also occur naturally and in significant quantities (Ninkovic et al., 2021).

Conclusion

The mouthparts of insect herbivores affect the composition and proportion of volatiles emitted by chilli plants. Infestations by herbivores with different mouthparts trigger the synthesis of new compounds that were not naturally emitted. Undecane was the only specific compound produced by chilli plants infested by *A. gossypii* and *S. litura*. The effect of herbivore Infestations with different mouthparts triggers an increase in the proportion of several volatile compounds, especially those that function as defences. The highest proportion of compounds in chilli plants infested by *A. gossypii* was eucalyptol (12.92%), while chilli plants infested by *S. litura* were o-Xylene (11.77%). These volatiles function as anti-microbial, anti-herbivores, and attractants.

ACKNOWLEDGEMENTS

The authors would like to thank the Directorate General of Higher Education, Research and Technology of the Ministry of Education, Culture, Research and Technology in accordance with the contract for the implementa-

Table 3. Identified compounds and relative peak areas (%) on GC chromatograms detected in undamaged chilli plants

Group	No.	Compound	Relative peak area (%)
Aldehydes	1.	Decanal	6.70
Alkenes	2.	4-Methyl-1-undecene	1.05
Alkohol	3.	3-Octen-2-ol	1.56
	4.	2-Methyl-1-penten-3-ol	1.28
	5.	1-Decanol, 2-ethyl-	1.04
Ester	6.	cis-3-Hexenyl acetate	16.67
Sugar alcohol	7.	Prehnitol	0.98
Aliphatic hydrocarbons	8.	2-Methyldecane	0.93
	9.	Undecane, 5,7-dimethyl-	0.68
	10.	Dodecane	1.84
	11.	3-Ethyl-3-methylheptane	1.62
	12.	Undecane, 3,5-dimethyl-	0.65
	13.	Undecane, 3,7-dimethyl-	1.07
	14.	Undecane, 6-ethyl-	0.80
	15.	Tridecane, 5-methyl-	1.55
	16.	Hexane, 3,3-dimethyl-	0.61
	17.	Tetradecane, 4-methyl-	1.09
	18.	Cetene	1.24
Aromatic hydrocarbons	19.	m-Xylene	3.31
	20.	o-Xylene	8.79
	21.	3-Ethyltoluene	5.95
	22.	Acetophenone	5.80
	23.	2-Ethyltoluene	3.57
	24.	Mesitylene	3.49
	25.	Benzene, 1,3-dichloro-	3.72
	26.	p-Xylene, 2-ethyl-	3.83
	27.	3,5-Diethyltoluene	1.71
	28.	2,5-Dimethylstyrene	2.15
	29.	o-Xylene, 3-ethyl-	1.53
	30.	Benzene, 1-ethyl-2,4,5-trimethyl-	1.48
	31.	Cumene, 3,5-dimethyl-	2.45
	32.	1,2-Dimethylindane	1.98
Calcium	33.	Cardene	8.89
Terpenoids	34.	Eucalyptol	0.01

tion of the research program in 2024 Number: 027/E5/PG.02.00.PL/2024 dated June 11, 2024.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Ali, M. Y., Naseem, T., Zhang, J., Pan, M., Zhang, F., & Liu, T.-X. (2022). Plant volatiles and herbivore induced plant volatiles from chilli pepper act as attractant of the aphid parasitoid. *Plants*, 11, 1350. doi.org/10.3390/ plants11101350
- Arimura, G. I., Matsui, K., & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. *Plant and Cell Physiology*, 50(5), 911–923. doi.org/10.1093/pcp/pcp030
- Azam, A., Kunimi, Y., Inoue, M. N., & Nakai, M. (2016). Effect of granulovirus infection of *Spodoptera litura* (Lepidoptera: Noctuidae) larvae on development of the endoparasitoid Chelonus inanitus (Hymenoptera: Braco-

- nidae). Applied Entomology and Zoology, 51(3), 479–488. doi.org/10.1007/s13355-016-0423-6
- Burruezo, A. R., Kollmannsberger, H., Mas, M. C. G., Nits, S., & Nuez, F. (2010). HS-SPME HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of capsicum fruits from the annuum - chinense - frutescens Complex. *Journal of Agricultural and Food Chemistry*, 58, 4388–4400. doi.org/10.1021/jf903931t
- da Costa, J. G., Pires, E. V., Riffel, A., Birkett, M. A., Bleicher, E., & Sant'Ana, A. E. G. (2011). Differential preference of *Capsicum* spp. cultivars by *Aphis gossypii* is conferred by variation in volatile semiochemistry. *Euphyti*ca, 177(3), 299–307. doi.org/10.1007/s10681-010-0250-8
- Du, Y. W., Shi, X. Bin, Zhao, L. C., Yuan, G. G., Zhao, W. W., Huang, G. H., & Chen, G. (2022). Chinese cabbage changes its release of volatiles to defend against *Spodoptera litura*. *Insects*, 13(1), 1–14. doi.org/10.3390/insects13010073
- Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. *Plant Physiology*, 135(4), 1893–1902. doi.org/10.1104/pp.104.049981
- 8. Gouinguené, S., Alborn, H., & Turlings, T. C. J. (2003). Induction of volatile emissions in maize by different larval

- instars of *Spodoptera littoralis*. *Journal of Chemical Ecology*, *29*(1), 145–162. doi.org/10.1023/A:1021984715420
- Hammerbacher, A., Coutinho, T. A., & Gershenzon, J. (2019). Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. *Plant Cell and Environment*, 42(10), 2827–2843. doi.org/10.1111/pce.13602
- Hegde, M., Oliveira, J. N., da Costa, J. G., Bleicher, E., Santana, A. E. G., Bruce, T. J. A., Caulfield, J., Dewhirst, S. Y., Woodcock, C. M., Pickett, J. A., & Birkett, M. A. (2011). Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. *Journal of Chemical Ecology*, 37(7), 741–750. doi.org/10.1007/s10886-011-9980-x
- Karban, R., Yang, L. H., & Edwards, K. F. (2014). Volatile communication between plants that affects herbivory: A meta-analysis. *Ecology Letters*, 17(1), 44–52. doi.org/10.1111/ELE.12205
- Kessler, D., Bing, J., Haverkamp, A., & Baldwin, I. T. (2019). The defensive function of a pollinator-attracting floral volatile. *Functional Ecology*, 33(7), 1223–1232. doi.org/10.1111/1365-2435.13332
- Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J., & Unsicker, S. B. (2019). Plant volatile emission depends on the species composition of the neighboring plant community. *BMC Plant Biology*, 19(1), 1–17. doi.org/10.1186/s12870-018-1541-9
- Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. *Botanical Review*, 72(1), 1–120. doi.org/10.1663/0006-8101(2006)
- Kundu, A., Mishra, S., & Vadassery, J. (2018). Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. *Planta*, 248(4), 981–997. doi.org/10.1007/s00425-018-2953-3
- Li, Y., Jia, W., Wang, Q., Wang, B., & Wang, S. (2022).
 Comparative analysis of floral scent profiles between two *Chimonanthus praecox* plants under different rhythms and blooming stages. *Scientia Horticulturae*, 301, 111129. doi.org/https://doi.org/10.1016/j.scienta.2022.111129
- Mansour, S. A. A., Roff, M. N. M., Saad, K. A., Ismail, A., Nadia, M. K., & Idris, A. B. (2015). Identification of semiochemicals released by brinjal, tomato, okra and chilli plants infested with whitefly, *B. tabaci. Libyan Journal of Basic Sciences*, 2(1), 25–40.
- Moran, P. J., & Thompson, G. A. (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. *Plant Physiology*, 125(2), 1074–1085. doi.org/10.1104/pp.125.2.1074
- Ninkovic, V., Markovic, D., & Rensing, M. (2021). Plant volatiles as cues and signals in plant communication. *Plant Cell and Environment*, 44(4), 1030–1043. doi.org/10.1111/pce.13910
- Paré, P. W., & Tumlinson, J. H. (1998). Cotton volatiles synthesized and released distal to the site of insect damage. *Phytochemistry*, 47(4), 521–526. doi.org/10.1016/ S0031-9422(97)00442-1
- Piesik, D., Łyszczarz, A., Tabaka, P., Lamparski, R., Bocianowski, J., & Delaney, K. J. (2010). Volatile induction of three cereals: Influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. *Annals of Applied Biology*, 157(3), 425–434.

- doi.org/10.1111/j.1744-7348.2010.00432.x
- 22. Ren, Q., Cao, L., Su, J., Xie, M., Zhang, Q., Liu, X., Ren, Q., Cao, L., Su, J., Xie, M., Zhang, Q., & Liu, X. (2010). Volatile emissions from the invasive weed *Eupatorium adenophorum* induced by *Aphis gossypii* feeding and methyl jasmonate treatment. *Weed Science*, 58(3), 252–257. doi.org/10.1614/WS-D-09-00002.1
- Riddick, E. W. (2020). Volatile and non-volatile organic compounds stimulate oviposition by aphidophagous predators. *Insects*, 11(10), 1–11. doi.org/10.3390/ insects11100683
- Rodriguez-Saona, C. R., & Frost, C. J. (2010). New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. *Plant Signaling and Behavior*, 5(1), 58–60. doi.org/10.4161/psb.5.1.10160
- Röse, U. S. R., & Tumlinson, J. H. (2004). Volatiles released from cotton plants in response to *Helicoverpa zea* feeding damage on cotton flower buds. *Planta*, 218(5), 824–832. doi.org/10.1007/s00425-003-1162-9
- Saad, K. A., Mohamad Roff, M. N., Hallett, R. H., & Idris, A. B. (2015). Aphid-induced defences in chilli affect preferences of the whitefly, *Bemisia tabaci* (Hemiptera: Aleyrodidae). *Scientific Reports*, 5(1), 13697. doi.org/10.1038/srep13697
- Santamaria, M. E., Arnaiz, A., Gonzalez-Melendi, P., Martinez, M., & Diaz, I. (2018). Plant perception and short-term responses to phytophagous insects and mites. *International Journal of Molecular Sciences*, 19(5), 1–20. doi.org/10.3390/ijms19051356
- Schettino, M., Grasso, D. A., Weldegergis, B. T., Castracani, C., Mori, A., Dicke, M., Van Lenteren, J. C., & Van Loon, J. J. A. (2017). Response of a predatory ant to volatiles emitted by aphidand caterpillar-infested cucumber and potato plants. *Journal of Chemical Ecology*, 43(10), 1007–1022. doi.org/10.1007/s10886-017-0887-z
- Sharma, P. L., Verma, S. C., Chandel, R. S., Shah, M. A.,
 Gavkare, O. (2017). Functional response of *Harmonia dimidiata* (fab.) to melon aphid, *Aphis gossypii* Glover under laboratory conditions. *Phytoparasitica*, 45(3), 373–379. doi.org/10.1007/s12600-017-0599-5
- Silva, D. B., Weldegergis, B. T., Van Loon, J. J. A., & Bueno, V. H. P. (2017). Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either *Tuta absoluta* or *Bemisia tabaci*. *Journal of Chemical Ecology*, *43*(1), 53–65. doi.org/10.1007/s10886-016-0807-7
- Smith, L., & Beck, J. J. (2015). Duration of emission of volatile organic compounds from mechanically damaged plant leaves. *Journal of Plant Physiology*, 188, 19–28. doi.org/10.1016/j.jplph.2015.08.003
- Steglińska, A., Pielech-Przybylska, K., Janas, R., Grzesik, M., Borowski, S., Kręgiel, D., & Gutarowska, B. (2022).
 Volatile organic compounds and physiological parameters as markers of potato (Solanum tuberosum L.) infection with phytopathogens. In *Molecules* (Vol. 27, Issue 12, p. 3708). doi.org/10.3390/molecules27123708
- Sun, Z., Lin, Y., Wang, R., Li, Q., Shi, Q., Baerson, S. R., Chen, L., Zeng, R., & Song, Y. (2021). Olfactory perception of herbivore-induced plant volatiles elicits counter-defences in larvae of the tobacco cutworm. *Functional Ecology*, 35(2), 384–397. doi.org/10.1111/1365-2435.13716

- 34. Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., & Dorn, S. (1998). The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. *Biological Control*, 11(2), 122–129. doi.org/10.1006/bcon.1997.0591
- 35. Venkanna, Y., & Suroshe, S. S. (2023). A simple technique for continuous rearing of cotton aphid, *Aphis gossypii* Glover. *International Journal of Tropical Insect Science*, 43(2), 519–526. doi.org/10.1007/s42690-023-00951-6
- Vijaya, M., Rani, P. U., & Rajna, S. (2018). Induced indirect defense in chilli plant, Capsicum annuum L. due to feeding stress caused by herbivore, Spodoptera litura F. Journal of Entomology and Zoology Studies, 6(2), 1264–1270.
- Wei, Z.-Q., Wang, J.-X., Guo, J.-M., Liu, X.-L., Yan, Q., Zhang, J., & Dong, S.-L. (2023). An odorant receptor tuned to an attractive plant volatile vanillin in *Spodoptera litura*. *Pesticide Biochemistry and Physiology*, 196, 105619. doi.org/https://doi.org/10.1016/j.pestbp.2023.105 619

- 38. Wu, M., Northen, T. R., & Ding, Y. (2023). Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. *Frontiers in Plant Science*, *14*, 1272363. doi.org/10.3389/fpls.2023.1272363
- Xu, Q., Wu, C., Xiao, D., Jin, Z., Zhang, C., Hatt, S., Guo, X., & Wang, S. (2023). Ecological function of key volatiles in Vitex negundo infested by *Aphis gossypii. Frontiers in Plant Science*, 13(January), 1–11. doi.org/10.3389/fpls.2022.1090559
- Yasa, V., Suroshe, S. S., & Nebapure, S. M. (2024). Behavioral response of zigzag ladybird beetle Cheilomenes sexmaculata to the HIPVs induced by cotton aphid, Aphis gossypii. Arthropod-Plant Interactions, 18(4), 771–780. doi.org/10.1007/s11829-024-10087-0
- Zuo, Z., Weraduwage, S. M., Lantz, A. T., Sanchez, L. M., Weise, S. E., Wang, J., Childs, K. L., & Sharkey, T. D. (2019). Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. *Plant Physiology*, 180(1), 124–152. doi.org/10.1104/pp.18.01391