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Spatial autocorrelation analysis in plant populatio: An overview
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Abstract: Analysis of spatial distribution in ecology is often influenced by spatial autocorrelation. In present paper
various techniques related with quantification of spatial autocorrelation were categorized. Three broad categories
namely global, local and variogram were identified and mathematically explained. Local measurers captures the
many local spatial variation and spatial dependency while global measurements provide only one set of values that
represent the extent of spatial autocorrelation across the entire study area. Global spatial autocorrelation measures
the overall clustering of data and it included six well defines methods, namely, Global index of spatial autocorrelation,
Joint count statistics, Moran’s |, Geary's C ration, General G-statistics and Getis and Ord’s G. The study revealed
that out of the six methods Moran’s | index was most frequently utilized in plant population study. Based on their
similarity degree, local indicator of spatial association (LISA) can differentiate the neighbors in to hot and cold spots.
Correlogram and variogram approaches are also given.
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INTRODUCTION can communities most efficiently be sample for igpat

When a plant population or community is sampled, th au_tocorr_elation?. They_ have sampled th(_a area with
samples have a spatial relationship with each otfrer ~ USINg triabgular sampling scheme. In their study th
a certain extent, samples that are close to edudr ot Percentage variation in species composition expéain
are more likely to be similar (Dale, 1999). Formpde ~ PY distance, i.e. by spatial autocorrelation, waghér

if vegetation is sampled using a transect of sooaiguous &t 1arger grain. However, it reached a maximumrf o
quadrates, adjacent quadrats are likely to be moré>%. The nugget — the Y-intercept of the dissiitylar
similar than those at greater spacing. The lack ofdistance relation —has been seen as a measarelofimess
independence is referred to as to as spatial autteion " COMmunity composition. It was generally abou 0.
because the correlation occurs within the datatseif ~ dissimilarity on a 0-1 scale, although values ie th
and arises because of spatial relationships. range 0.7-0.8 were found at smaller grain sizethén

Spatial autocorrelation may be defined as theioelsip ~ forest. The 90% distance, i.e. the distance at fwhic
among the values of a single variable that comes fr dissimilarity reachgs 90% of its f|naI. value, mxaisnpre‘gable
the geographic arrangement of the areas in whieseth only for the two sites where spatial autocorrefaticas
values occur. It measures the similarity of objectsStrong, but gave realistic estimates. On the basis
within an area; the degree to which a spatial pimemon ~ these results they have concluded that lack oeased

is correlated to itself in space (Cliff and Ord,81y, ~ SPatial community predictability when including sjes

the level of interdependence between the variatiles, @bundances conforms to the majority of previoudias,
nature and strength of the interdependence, iatiatp indicated that the primary communlty control istbe
autocorrelation is an assessment of the correlatign ~ Presence of species, not their abundance. They have
variable in reference to spatial location of theiatsle. ~ @rgued that the triangular sampling scheme useel her
Assess if the values are interrelated, and if shege a ~ WaS rapid, accurate, and efficient in its distribntof
spatial pattern to the correlation, i.e. is thepatiml  distances. , _ _
autocorrelation. Weixelman and Riegel (2012) havehe causes of spatial autocorrelation are manitold,
utilized spatial autocorrelation to understand hmw three factors particularly common (Legendre and
sample the community in mountain meadows and theyOrtin, 1989; Legendre, 1993; Legendre and Legendre
have concluded that quantification of sampling poin 1998) are:1) biological processes such as spewjatio
spacing is the prerequisite to ensure spatial tagtical ~ €xtinction, dispersal or species interactions aséauce
independence for the presence/absence dateetRoe -related,; 2) non-linear relationships betweenrgrwnent
(2012) have questioned that how does the spatiatste and_ species are mo_deled erroneously as I|r_1eah93) t
of plant communities vary with the spatial grairdan stat!stlcal model falls. to account for an |mpor_tant
with the measure of species presence used and ho@nvironmental determinant that in itself is spatial
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structured and thus causes spatial structuringhén t contagious (clumped) over short distance, suchitelil
response (Besag, 1974). The second and third pointseed dispersal, clonal growth, nutrient-rich pascived
are not always referred to as spatial autocormedati positions on an environmental gradient. By confrast
but rather spatial dependency (Legeneral.,2002).  negative spatial autocorrelation over short distanc
Since they also lead to autocorrelated residubésset would suggest avoidance or competition among
are equally problematic. A fourth source of spatial neighbors.

autocorrelation relates to spatial resolution, beea Methods dealing with spatial autocorrelation:Spatial
coarse grains lead to a spatial smoothing of datall autocorrelation tools test whether the observedeval a

of these cases, spatial autocorrelation may coufoun variable at one locality is independent of valuethe

the analysis of species distribution data. Spatialvariable at neighboring localities. A variety of timads
autocorrelation may be seen as both an opportanity have consequently been developed to correct foefthe

a challenge for spatial analysis. It is an oppatyun fects of spatial autocorrelation (partially revieWizy Miller
when it provides useful information for inferencé o et al.,2007), but only a few have made it into the eco-
process from pattern (Palre@al.,1999), for example, logical literature.

increasing our understanding of contagious bioticBefore considering the use of modeling methods that
processes such as population growth, geograpliersid, ~ account for spatial autocorrelation, it is a selasflrst
differential mortality, social organization or coatition step to check whether spatial autocorrelation igat
dynamics (Griffith and Peres-Neto, 2006). In most likely to impact the planned analyses, i.e. if mode
cases, however, the presence of spatial autoctorela residuals indeed display spatial autocorrelatidredRing

is seen as posing a serious shortcoming for hypisthe for spatial autocorrelation (SAC) has become a
testing and prediction (Lennon, 2000; Dormann, 2007 commonplace exercise in geography and ecology
because it violates the assumption of independemtty  (Sokal and Oden, 1978 and Fortin and Dale, 2005).
identically distributed (i.e.) errors of most stand  There are many indicators of spatial autocorretatio
statistical procedures (Anselin, 2002) and hentlates  (Cliff and Ord, 1981; Goodchild, 1986; Isaaks and
type | errors, occasionally even inverting the slajf ~ Shrivastava 1989; Haining, 1990; Chou, 1997; Petry
relationships from non-spatial analysis (Ku'hn, 200 al., 2002; Su-Wei and Hsieh 2010). Diniz-Fillet al.
Spatial autocorrelation describes the correlatibthe  (2003) and Kuhn (2007) have argued that the presenc
values of a single attribute related to the profynaif of residual spatial autocorrelation should always b
those values in geographic space (Tobin, 2004; Buzu tested for in spatial ecology and appropriate nmitho
et al., 2008). Spatial autocorrelation relies on datashould be used if there is shown to be signifismatial
interdependence and spatial statistics (Odlandg8 198 autocorrelation

and Overmarst al.,2003). Spatial autocorrelation is a widespread phenomémon
Spatial autocorrelation exists when there is syatem ecology (Fortiret al.,1989; Henebry, 1995; Torgersen
spatial variation in the values of a given variablnis et al., 1995; Koenig, 1998; Radeloéft al.,2000). The
variation can exist in two forms called positive or spread of plants by the processes of growth, végeta
negative spatial autocorrelation. In the positbase,  reproduction, and limited seed dispersal produpasias

the value of a variable at a given location termibe¢  autocorrelation. Plant species respond individticaity
similar to the values of that variable in nearby to their environment, both directly and indirectly
locations. This means that if the value of som@kte is through species interactions. Autocorrelation can b
lowin a given location, the presence of spatimcauwrelation  used to compare the pattern of the same speaitiféenent
indicates that nearby values are also low. Comlgrs environments, and the patterns of different speities
negative spatial autocorrelation is characterizgd b the same environment. For plant analysis the dpatia
dissimilar variant values in nearby locations. €&@mple, a  autocorrelations and its various uses were disdusge
low variant value may be surrounded by high valnes Heikkinen et al. (1996), Hawkinset al. (2003),
nearby locations when negative spatial autocoioglat Dorman (2007) and Su-Wei and Hsieh (2010). Goslee
exists. A positive spatial autocorrelation refessa  (2006), Roeet al., (2012), Weixelman and Riegel
map pattern where geographic features of similareva (2012) and Mathur (2014) have discussed thevimisa
tend to cluster on a map, whereas a negative spati®f different vegetation sampling methods in thespnee
autocorrelation indicates a map pattern in whicsgggphic  of spatial autocorrelation. He concluded that teahs
units of similar values scatter throughout the map.methods especially responded poorly to spatial
Positive spatial autocorrelation occurs when adjaice autocorrelation and randomly-located quadrats were
neighborhood locations have similar attribute value more efficient in highly patchy environments, bartge
(Griffth, 2003; Almeida-Neto and Lewinsohn, 2004 numbers of quadrats are needed for either method if
Mueller-Warrantet al., 2008). When no statistically rare species must be located. He emphasized tliascale
significant spatial autocorrelation exists, thetgat of ~ methods are more robust to spatial autocorrelatiod,
spatial distribution is considered random (Chol@7)9  more effective at identifying rare species becaofse
Positive spatial autocorrelation over short disésnis  the larger proportion of the total area sampledveCo
commonly observed and reflects phenomena that arand especially frequency estimates are highly laéeja
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and depended on both the level of autocorrelatiah a
the sampling method used.

Spatial autocorrelation can be analyzed from tviferdint
perspectives. Global autocorrelation analysis ivesl
the study of the entire map pattern and generalkg a
the question as to whether the pattern displaystering
or not. Local autocorrelation, on the other harnifts
the focus to explore within the global patternderitify
clusters or so called hot spots that may be edtieing
the overall clustering pattern, or that reflecehegeneities
that depart from global pattern. Global statistoswer
the question: is there a spatial pattern (Y/N)?dloc
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observations tend to occur near each other (Rogerso
1999; Waller and Gotway, 2004 and Jackson and
Waller, 2005). Six different tests for global spéti
autocorrelation includes the Gamma index of spatial
autocorrelation, join count statisticsMoran’s |,
Geary’s C, General G statistics and Getis and G&d's
The common elements of the various spatial autelation
models are (1) a matrix of values representingskeciation
between locations and (2) values representing torvec
of the attributes of the various locations (Get891).

A. Gamma index of spatial autocorrelation: The
Gamma Index of spatial autocorrelation consistthef

statistics, on the other hand, answer the questionapplication of the principle behind a general cross

where is there spatial pattern (map)
1. Global indicators of spatial autocorrelationlimes

product statistic to measuring spatial autocoiiosat
Hubertet al. (1981). The idea is to assess whether two

methods like Gamma index of spatial autocorrelation similarity matrices for n objects, i.e., n by n nas A

Join count statisticdyloran’s |, Geary’s C, and Getis
and Ord’'s G

2. Local indicators of spatial autocorrelation urdes
local Moran’s |, Local Geary and Local Gi and Gi*
statistics.

and B measure the same type of similarity. This is
reflected in a so-called Gamma Index

= 2,2 a;-byj;

In other words, the statistic consists of the swer all

3. The variogram approach to spatial associationcross-products of matching elements (i,j) in the tw

(geostatistical perspective) includes correlogramd a
semi variogram

Defining contiguity:In spatial autocorrelation analysis
some measure of contiguity is required. Contigheg

a rather broad definition depending on the reseqrektion,
however, most analyses in spatial autocorrelatitireie

to a common definition of neighbourhood relations.
Namely, neighbourhood relations are defined aseith
rooks case, bishops case or queens (kings) casseTh
are rather simple and intuitive as their names ssigg
(Fig. 1). Rooks case contiguity is by a neighboorho
of 4 locations adjacent to each cell, Bishops oolysiders
the diagonals of the relation and queens or kirage c
considers a neighbourhood of eight cells. Thesdhare
most common forms of contiguity used in spatial
autocorrelation when considering continuous data in
raster format. Of these three the rooks case isnthst

matrices. The application of this principle to splat
autocorrelation consists of turning the first samiy
matrix into a measure of attribute similarity arfcb t
second matrix into a measure of locational sintiari
Naturally, the second matrix is the spatiaight matrix.

The first matrix can be any reasonable measure of
attribute similarity or dissimilarity, such as ass-product,
squared difference or absolute difference.

Formally, then, the Gamma index is:

I = Z_Z-ﬂ_;j.u'ij
® F

Wherew; are the elements of the weights matrix and
a; are corresponding measures of attribute similarity
Inference for this statistic is based on a perntat

approach in which the values are shuffled around
among the locations and the statistic is recomputed

commonly used and most programmes only will computeeaCh time. This creates a reference distributiartife

this case.

1. Global autocorrelation

Global spatial autocorrelation is a measure ofotrexall
clustering of the data. Global indices of spatigeorrelation
have been used to evaluate the degree to whickasimi

Rooks moves
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statistic under the null hypothesis of spatial andess.

The observed statistic is then compared to thereate
distribution and a pseudo-significance computed as
p=(m+1)/(n+ 1)

Where m is the number of values from the reference

Queen’s moves

138

Fig. 1. Type of neighbourhoods relations. (Mathur 2014).
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distribution that are equal to or greater thandbserved lation (Upton and Fingleton, 1985). Measuring the
join count and n is the number of permutations. Thecorrelation (simultaneous change in value of twmext-
Gamma test is a two-sided test in the sense that bo cally valued random variables) among the neighigprin

extremely high values (e.g., larger than any vafue
the reference distribution) and extremely low value
(e.g., smaller than any value in the referenceiloligton)
can be considered to be significant. Dependingam h
the measure of attribute similarity is defined, ighh
value will indicate positive or negative spatiaioaarrelation,
and vice versa. For example, for a cross-produetsare
of attribute similarity, high values indicate posit
spatial autocorrelation and low values negativdiapa
autocorrelation. For a squared difference measti®,
the reverse. This is similar to the interpretatifrthe
Moran'’s | statistic andseary’s Cstatistic respectively.

Many spatial autocorrelation test statistics can be
shown to be special cases of the Gamma index. In| =
most instances, the Gamma index is an unstanddrdize

version of the commonly used statistics. As subh, t
Gamma index is scale dependent, since no norniatizat

observations in the pattern is done using the a&lpati
autocorrelation statistiddoran’s I. Moran’s | is de-
fined as a measure of the correlation among neighbo
ing observations in a pattern (Boots and Getis8)198
Computation ofMoran’s | is achieved by division of
the spatial covariation by the total variation. &emt
values are in the range from approximately -1 tBdsi-
tive signage represents positive spatial autocaios,
while the converse is true for negative signagethVi
Zero result representing no spatial autocorrelation

w ij(Xi _7)()(]_)()

)Y (x, - %)

D

i=1 j=1

Where N

is carried out (such as deviations from the mean olis the number of observation of the whole region

rescaling by the variance).

B. Joint count statistics: Join-count statistics are the
simplest measure of spatial autocorrelation whiarew
put forward by Moran in 1948. They are used fomaty
variable, "0" and "1", which are often used reféne as
“white” and “black”. A join links two neighboringraas;
the possible types of joins are limited to whitetteh
(WW), black-white (BW), and black-black (BB). Join-
counts are frequencies or counts of the numbg(&, 6,
(0, 1), and (1, 1) joins in the study area, ande¢hsum-
bers are compared to the expected numbers of thdar u
the null hypothesis of no spatial autocorrelatibime ob-
served number of (0, 0), (0, 1) and (1, 1) joires giwven
by

E?=1E_?:1 Cz'_;l' |x:’ - x_;l'l

(ﬂ,'l} = 2

E?:j_E?:l C---:'_;u' (1 _x:'} (-l - :X.'_;,-j
(ﬂ,ﬂ} = 2

E?::LE_?::L Céj'xi—x_:l'}
(Li} = 2

Wherexi is the binary attribute value related to region
i, 1 or 0,Cij is a value assigned to region i and region |

by a spatial weighting function. Join-count statist
have been widely applied to analysis spatial atrelation

in remote sensing data (Congalton, 1988; Chuang an
Huang, 1992; Pugh and Congalton, 2001). Most o

these applications on join-count are restrainedioary
variables, the values of each spatial unit areeeith
(black) or O (white).

C. Moran’s I: Moran (1948) introduced the first meas-
ure of spatial autocorrelation in order to studychs-
tic phenomena which are distributed in space in awo
more dimensionsMoran’s | has been subsequently
used in almost all studies employing spatial aut@:zo

brar (1) -

X is the mean of the variable

X; is the variable value at a particular location

X; is the variable value at another location

Wi is a spatial weight between locations lative toj
Moran’s | formula is related to Pearson’s correlation
coefficient; its numerator is a covariance, CONTgri
the values found at all pairs of points in turn,ilelits
denominator is the maximum-likelihood estimator of
the variance (i.e. division hyinstead of+ 1); in Pearson’s

r, the denominator is the product of the standavéhiitens

of the two variables, whereas Moran's | there is
only one variable involvedMvoran’s | mainly differs
from Pearson’s in that the sums in the numerator and
denominator do not involve the same number of terms
only the terms corresponding to distances withia th
given class are considered in the numerator wheéas
pairs are taken into account in the denominator.
Statistical test for Moran’s |: Global Moran’s | can
be standardized to Z and this can be calculated as

_1-EQ

V(D)
E(l) = -1/(n-1)
Where, w; is the sum of all weights located in the
row I, w is the sum of all weights in the column i. The
threshold of 1.96 can be applied to test the sagmite
iFVEl of Z. If Z is greater than 1.96 or smallearth

E2—(I)

1
— (n? W _t u~+3w‘}—
wy (n? —1]

ZZWU,WI-BSZZWUM' Wy Z(wtﬁwﬂ)g

i=1;=1 i=1j=1

-1.96, it implies that the spatial autocorrelatioas
significant (Zhang and McGrath, 2004)
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The tool computes a z-score and p-value indicatin
whether this difference is statistically signifitaor
not. Index values cannot be interpreted directigyt
can only be interpreted within the context of thdl n
hypothesis. The p-value is a probability. For tlagtgun
analysis tools, it is the probability that the alveel

gﬁe fix at any specified value). In order to capttive
ariability present in the region, Oden includes finst
term in the numerator which is used to model thee sp
tial variation in a manner similar to conventiomdi-
squared for heterogeneity rates. The odensg ¢tan
be written as
spatial pattern was created by some random proc:es%/.l""cksonEt aI._(2010) improves the original versipn pf
oran’s | by incorporation of (a) a weight function in

When the p-value is very small, it means it is very ; . _ ; :
unlikely (small probability) that the observed saht the variance computation (b) introducing th? paria
density weight function and (c) conducting Monte

pattern is the result of random processes, so we ca . : . ) T
reject the null hypothesis. Z-scores are simplpczad _Carlo S|m_ulat|on. . Their weight function is not ;an_l’
deviations. Both z-scores and p-values are assaciat included in the differences of the geographic snit
with the standard normal distribution (Table 1) )

Very high or very low (negative) z-scores, asseclat ];”{"‘ ZZ"‘ tem wdllemr)=n (1

with very small p-values, are found in the tailstioé —2 Y wpem b Y }X 1

normal distribution. When we run a feature pattern e i e
analysis tool and it yields small p-values and ezita
very high or a very low z-score, this indicatesisit
unlikely that the observed spatial pattern reflabis
theoretical random pattern represented by ouhyptithesis
(CSR). A statistically significant positive z score
means that similar values cluster spatially. Higlues
are found closer together, and low values are foun
closer together, than we would expect from an uyidgr
random spatial process. A statistically significaetjative

Z score means that similar values are spatiallyedsed.

High values are found far away from other high ealu G ' C its | I ithin th f 82
and low values are found far away from other lo\ues, eary's C results in a value within the range :
|W|th zero being a strong positive spatial autodarre

and this dispersion is more pronounced than we avoul | . :
tion, through to 2, which represents a strong negat

expect from an underlying random spatial process . . ) . g
(Table 2). spatial autocorrelation? Calculation is similar to

Moran’s |, For Moran, the cross-product is based on the
deviations from the mean for the two location valuile

for Geary, and the cross-product uses the actlaésa
themselves at each location. Geary’'s C statistea(@
1954) is based on the deviations in responses af ea
observation with one another:

cases from the overall mean, but also in the cafiow

of the variance. They also expand the definitiédn o
neighbors to a broader concept in the construation
Moran’s | (e.g., all geographic units included in a preipec
geographic range will be considered to be neighbbrs
Othe geographic unit in the center. They have catedu
that modifiedMoran’s | achieved higher power than
Moran’s | and Tpop for evaluating global and local clustering
patterns on geographic data with homogenous papnlat
D. Geary's C (Contiguity) ratio: Computation of

The spatial autocorrelation (Globloran’s I) tool is

an inferential statistic, which means that the Itesof

the analysis are always interpreted within the exint
of its null hypothesis. For the Globigloran’s | statistic,

the null hypothesis states that the attribute baivadyzed

is randomly distributed among the features in study

area. W (% = %)?
Dray et al. (2008) have introduced multivariate spatial _ n—lZ‘Zj: A
analysis based on Moran;s | (MULTISPATI) by introithg - 25, Z (X- —X)z

a row-sum standardized spatial weight matrix. Their

analysis implies a compromise between relations ) .

among variables (multivariate analysis) and thpatial The variance is:

structure (autocorrelation). Chest al. (2008) have Var(e) — 1 ]

quantified the strength of autocorrelation by using ;‘f}‘;’{(;f’f’; ):‘):‘(v L 10— D s 5 k1)
Moran’s |. They have reported that for bothand 8 ;f&(’”il)[k.(nz; ”H)il(_mu%imj}' c

tree diversities, the distance of the spatial auteéation 4

increased slightly at the scale of 10-15 and 200 kmyhere S0, Sland S2 are the same as Moran’s |.
and decreased around 20-40 km. However, interpretation of these values is verfetht,
Modified version of Moran’s I: Traditional calcula-  essentially the opposite. Gearysvaries on a scale
tion of Moran’s | for heterogeneous populations is not from 0 to 2, C of approximately 1 indicates no autocorrelation
working well (Jacksort al., 2010). Therefore, several  random,C of 0 indicates perfect positive autocorrelation
alternative version dfloran’s | have been proposed to /clustered, C of 2 indicates perfect negative amtetation
account for heterogeneous population, for example/dispersed. Can convert to a -/+1 scale by: caitga
Oden (1995); Waldhor (1996); Assuncao and Reisc*=1_C

(1999) and Walleet al. (2006). Oden (1995) proposed Geary's C coefficient is a distance-type function; it
the modifiedMoran’s | function (I*pop)he noted that  varies from 0 to some unspecified value larger than
symmetry is not required for J5; and w. O (but can  |ts numerator sums the squared differences between
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values found at the various pairs of sites beimgpared.

A Geary's C correlogram varies as the reverse of a
Moran’s | correlogram; strong autocorrelation produces

high values of and low values dE. Positive autocorrelation
translates in values ofbetween 0 and 1 whereas negativ
autocorrelation produces values larger than 1. Elenc
the reference ‘no correlation’ value@= 1 in Geary’s
correlograms.

Statistical significance tests for Geary's C:
Similar to Moran which based on the normal freqyenc
distribution with

¢ —E(C)
 Sarrar ©)
E(C)=1

A statistically significant positive Z score mearigh/
larger values cluster spatially larger values anené
closer together than we would expect if the undiegly
spatial process was random. A statistically sigaifit
negative Z score means that low/smaller valuedalus
spatially smaller values are found closer togethan
we would expect if the underlying spatial processw
random.

Moran’s | and Geary'€ coefficients are used to measure
the degree of spatial autocorrelation displayedaby
quantitative variable and to test the null hypoihes
(Ho) that there is no significant spatial autoctatien
(positive: aggregation, segregation). Since thes#iicents
compare values for pairs of points, the set oflaiée
point pairs is divided into a number of distancesesks.
This number of classes is left to the user. Likar&an's
correlation coefficient,Moran’s | is based on the
computation of cross products of centred data. ¥ear

C is a distance type coefficient, summing squared

differences between adjacent pairs of values. 8pati
autocorrelation analysis should not be performetth wi
fewer than 30 localities, because the number ot pdi
localities in each distance class would then becmoe
small to produce significant results (Cliff and Ord
1981; Legendre and Fortin 1989). Formulas for cdimgpu
the coefficients as well as the standard errorhef t
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it's more powerful than Geary’€. (Cliff and Ord,
1981)

E. General G-Statistic

Moran’s | and Geary'sC will indicate clustering or

e positive spatial autocorrelation if high valuegy(aree

with high density) cluster together (often callbdt
spotg and/or if low values cluster togethdrefe with
low density, but they cannot distinguish between these
situations. The Gener@ statistic distinguishes between hot
spots and cold spots. It identifispatial concentrations
G is relatively large if high values cluster togethe
while G is relatively low if low values cluster tetper.
The GeneralG statistic is interpreted relative to its
expected valudvalue for which there is no spatial
association). Larger than expected value indigadésntial
“hot spot” while smaller than expected value intksa
potential “cold spot”. Zest statisticis used to test if
the difference is sufficient to be statisticallgrsficant.
Calculation ofG must begin by identifying aeighborhood
distancewithin which cluster is expected to occur.

G (dj _ EE Wf;(fi:]xij

LXxx;

Where ; d is neighborhood distance; Weights matrix
has only 1 or 0; 1 if j is within d distance ofGi;if its

beyond that distance
Statistical Significance Tests:

_E(®
ST (©
Expected value (if no concentration) for G is givsn

Ve = (E (G)E (Gf
where W = Z Z Wy (d)
Io]

For the General G, the terms in the numerator (@op)
calculated “within a distance bound (d),” and drent
expressed relative to totals for the entire regiader
study. As with all of these measures, if adjacent

¢

E(Gj = HL

(n—1)

estimated statistics can be found in Cliff and Ordterms are both large with the same sign (indicating
(1981), in Sokal and Oden (1978) and in Legendtk an Positive spatial association), the numerator (tof)

Legendre (1984)
Both Moran’s | and Geary'sC are calculated at various
distances, d. Both test the null hypothesis thateths

be large
F. Getis and Ord’'s G:Method developed by Getis and
Ord (1992; 1996) not only provide hypothesis testin

no significance spatial autocorrelation among thet0 determine whether clustering has occurred within
mapped points with respect to the measured variabléataset, but also provide information on the extent

(Gibson, 2002 and Dormarat al.,2007).Moran’s | is
produced by standardizing the spatial auto coveeian
by the variance of the data using a measure abtheectivity

which above and below average values cluster more
strongly and identify local concentration of clustg
(Laffan, 2006; Mueller-Warranet al., 2008). The

of the data. Geary'§ uses the sum of squared differences high/low clustering (Getis-Ord General G) tool is a

between pairs of data values as its measure ofiatioa.

inferential statistic, which means that the resaftshe

Moran’s | is a more global measurement and sensitivednalysis are interpreted within the context of the

to extreme values of, whereas Geary'€ is more

hypothesis. The null hypothesis for the high/loustgring

sensitive to differences in small neighborhoods. In(General G) statistic states that there is noasptistering

general,Moran’s | and Geary'sC result in similar
conclusions. Howeveloran's | is preferred because

of feature values. When the p-value returned by tthol
is small and statistically significant, the nullgoghesis
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can be rejected. If the null hypothesis is rejedieeh the
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potential outliers.

sign of the z-score becomes important. The high/lowRecently, LISA has been successfully used in variou

clustering (Getis-Ord General G) tool is most appete
when we have a fairly even distribution of valued are
looking for unexpected spatial spikes of high value
Unfortunately, when both the high and low valuesiglr,
they tend to cancel each other out. The null hygsiHfor
both the high/low clustering (Getis-Ord General a8yl
the spatial autocorrelation (Glob8oran’s I) tool is
complete spatial randomness (CSR); values are maydo
distributed among the features in the datasegataip
random spatial processes at work. However, thpiietation of
z-scores for the high/low clustering tool is verffedent
from the interpretation of z-scores for the spatigbcorrelation

research areas outside geography: to identify asd t
“hot spots” (positive autocorrelation or similajitgnd
“cold spots” (negative autocorrelation or dissimitlg

in biological data sets (Sokat al.,1998a, 1998b), to
characterize remote sensing and Landsat TM imagery
(Wulder and Boots, 1998 and 2001), to detect Spatia
clustering of disease (i.e., spatial scan stajisitic
epidemiological studies (Hjalmaes al.,1996; Kulldorff,
1997; Gangnon and Clayton, 2001), and to study the
spatial point patterns in a minefield and in a 6t
pine saplings (Cressie and Collins 2001a and 2001b
LISA is commonly formulated as a numerical measure

(GlobalMoran’s |) tool: It measures the degree of clustering of a random variable relating each individual datiem

for either high values or low values. Wheregpresent
the value of feature i,; yepresent the vlaue of feature j,

the values observed at neighboring locations. dinslar
or compatible, at least conceptually, to traditicinee

and vy is the weight assigned to each pair of featurescompetition indices. Therefore, LISA would be an

Fox et al. (2012) have use global and loddbran’s |
spatial autocorrelation statistics, Getis-Ord Gah&
global high/low clustering and Getis-Ortlest statistic
techniques to evaluate the spread patterns ofljgate
infestation over time.

Local Autocorrelation: Spatial autocorrelation can
also be measured at the local level to evaluatextent
of autocorrelation within local neighbourhoods. abc
measures captures the many local spatial variatizh

appropriate indicator for local spatial heteroggnei
and useful for investigating the effects of neigtihg
trees of different species, sizes, and separatstandes
on the subject tree’s performance. FurthermoreALIS
can be readily incorporated into visualization $ol
such as a geographic information system (GIS), Useca
it provides geo-referenced information at a loeadel
(Unwin, 1996 and Lee and Wong, 2001).

Shi and Zhang (2003) have utilized various LISA

spatial dependency while global measurements peovid approaches to explore the relationship between LISA

only one set of values that represent the extespatial
autocorrelation across the entire study afieaeller
-Warrantet al., 2008). As an operational definition,
Anselin (1995) has defined thacal indicator of spatial
association(LISA) is as any statistic that satisfies the
following two requirements: 1. the LISA for each
observation gives an indication of the extent ghificant
spatial clustering of similar values around thateobation;
2. the sum of LISAs for all observations is projmoréal
to a global indicator of spatial association. Teaeral

and traditional tree competition indices, to expltine
possibility that LISA can be used as a predictaraée
for predicting tree growth, and to demonstrate the
usefulness of LISA for identifying and testing dkrs
of trees with similar or dissimilar sizes. They waiso
that like most of the competition indices, LISA had
moderate correlations with tree basal area grokoin.
predicting the tree basal area growth in a linegrassion
model, the local Gi performed better than many (Y3%
competition indices at a plot aggregation level aad

LISA can be used as the basis for a test on the nulhigher explanatory power than most (91%) competitio
hypothesis of no local spatial association. Forheac indices at an individual plot level. Therefore, ythe

location, LISA values allow for the computationitsf
similarity with its neighbours and also to test its
significance. Five scenarios may emerge:

1. Locations with high values with similar neighisiu
high-high Also known as hot spots

2. Locations with low values with similar neighbsur
low-low. Also known as cold spots

3. Locations with high values with
neighbourshigh-low Potential “spatial outliers.
4. Locations with low values with high-value neighibs:
low-high Potential “spatial outliers.

5. Locations with no significant local autocorréat
These specific configurations can be first ideetifi
from a scatter plot showing observed values agéiest

low-value

recommended that LISA can replace the traditional
competition indices for exploring the competitive
status of neighboring trees, investigating thetimeiahips
between tree competition and growth, and estimating
individual tree growth as a predictor variable ifoeest
growth simulator. The hot spots or cold spots ifiedt

by LISA provide useful information for the desigh o
silvi-cultural and management treatments, such as
selection thinning.

The second requirement of the LISA permits the
decomposition of a global coefficient of spatial
autocorrelation into separate parts, making it jpbess

to identify the individual locations that are major
contributors to the global autocorrelation. Anselin

averaged value of their neighbours. This so-called(1995) described two LISAs to match the established

Moran scatter plot is a useful exploratory tool.cOma
significance level is set, values can also be @ibtin a
map to display the specific locations of hot spentsl

global SA coefficients| andc. These LISAs employ
only those elementss; of the weight matrixW that
have nonzero weights with localitywhose local spatial
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Table 1. Statistical relationships between z and p valuestiiMr 2014).

z-score (Standard deviations) p-value (Probability) Confidence level

<-1.65 or > +1.65 <0.10 90%
<-1.96 or > +1.96 <0.05 95%
<-2.58 or > +2.58 <0.01 99%

Table 2.Interpretation of the z and p values (Mathur 2014).

The p-value isot statistically significant.

We cannot reject thelrypothesis. It is quite possible that the
spatial distribution of feature values is the réstilrandom spatial
processes. The observed spatial pattern of featues could very
well be one of many, many possible versions of detepspatial
randomness (CSR).

The p-valueis statistically significant, andWe may reject the null hypothesis. The spatialritigtion of high

the z-score is positive.

values and/or low values in the dataset is mord¢iadlyaclustered
than would be expected if underlying spatial preesswere
random.

The p-valueis statistically significant, andWe may reject the null hypothesis. The spatialrithgtion of high

the z-score is negative.

values and low values in the dataset is more djyadispersed than
would be expected if underlying spatial processeseewandom. A
dispersed spatial pattern often reflects some tyjpeompetitive

process—a feature with a high value repels otretufes with high
values; similarly, a feature with a low value repether features
with low values.

autocorrelation we wish to evaluate. The local Mé&a  |evel P-value is similar to that of the local Moran after

coefficient at locality is defined as

MC, = (X, — i}z ci; (d)(X; —X)

the standardization. A smédttvalue P < 0.05) indicates

a largeGR in extremes, which suggests a positive spatial
association (i.e., similarity) of observationwith its
surrounding observations, whereas a ldPgealue P

A positive MC; indicates a spatial clustering of similar > 0.95) indicates a sma&@R in extremes, which suggests
values (either high or low), whereas a negatié; a negative spatial association (i.e., dissimilaribf
indicates a clustering of dissimilar values (eadgcation ~ observation with its surrounding observations. From
with low values is surrounded by neighbors withthig their previous work (Getis and Ord 1992), Ord and
values). When th&C, is standardized by division by Getis (1995) defined local G statistics, which gare

the variance.

(E(ﬁ@-n— fﬁ}‘}

index of spatial clustering of a set of observationer
a defined neighborhood

¥ _ E}' Cij (d}X} )

A pseudo-significant level d¥1C; can be obtained by a ~& — X

conditional randomization or permutation approath. ) _ )

smallP value (e.g.P < 0.05) indicates that locatiois ~ The two equations differ depending on whether the
significantly associated with the relatively highlnes of ~ locationi around the clustering is measured is included
the surrounding locations. A largevalue (e.g., P > in the calculation. There is no theory to guide ahihi
0.95), on the other hand, indicates that locafiaga ~ ONe to use in any particular situation, but théedénce
significantly associated with relatively low value§  between the two is typically small. THgi or Gi *

the surrounding locations. Anselin (1995) outlired compares the local (weighted) average with theajlob

local variant of the Geary ratio

GR; = Z c;; (d) (X, —X;)?

i

average. If high values of (i.e., the variable under
study) tend to cluster arouridthe G; or G* will be
high; if low values ofX tend to cluster aroung then
the Gi or Gi * will be low; and no distinct clustering of
high or low values oK aroundi will produce intermediate

Unlike the local Moran, the local Geary is a measur values of theG; or Gi* (Fotheringhamet al., 2000).

of the weighted sum of square differences betwhen t After the standardizati
observed values at locatioand those of its surrounding
locations. The calculation of the pseudo-significan

on, a significant and posits;
or G; * indicates that the locationis surrounded by
relatively large values, whereas a significant aedative
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Gi or Gi * indicates that the locatidnis surrounded by coefficients) or for multivariate data (Mantel edogram).
relatively small values. Th&; or G, * statistics can be In all cases, a test of significance is availaloledach
used to identify spatial agglomerative patternshwit individual autocorrelation coefficient plotted in a
high-value clusters or low-value clusters. In sumypa correlogram. Similarly, avariogram is a graph in

the localMC; measures joint covariance of neighboring which semi-variance is plotted, on the ordinateiast
locations. In other words, it measures the coticanf distance classesmmong sites on the abscissa. In the geo
eachXi with all Xs within the distancel of the subject  -statistical tradition, semi-variance statistice arot
locationi. If these locations deviate significantly from tested for significance, although they could betigh

the average in a given area and have similarly bigh the test developed for Geary& when the condition
low values with the subject point, the local sgatia of second order stationary is satisfied. Sta#ikticodels
autocorrelation is positive. If the subject locatics may be fitted to variograms (linear, exponential,
widely different from the mean and has values unlik spherical, Gaussian, etc.); they allow the investigto
those of its neighbors, the local spatial autodatian relate the observed structure to hypothesized afavger

is negative. The loc&R measures (squared) differences processes or to produce interpolated maps by krigin
of the values between the subject and the neighipori Because they measure the relationship between pairs
locations. High values d&R indicate negative spatial of observation points located a certain distancartap
autocorrelation. Data values at the subject looadiod  correlograms and variograms may be computed either
its neighbors that are all close to the mean aosvsh for preferred geographic directions or, when the-ph
as a positive spatial autocorrelation by @&, but as  nomenon is assumed to be isotropic in space, in an
weak or 0 autocorrelation by tivC;. The localG; and all-directional way. Hueet al. (2012) have plotted spatial

G * measure overall concentration or lack of concéotrat correlogram withMoran’s I. They have used this tool

of all pairs of Ki, Xj) such thati andj are within the  for mapping of soil heavy metals in Beijing, China.
distance of each other. Tl&& andG, * tend to agree  According to Legendre and Fortin (1989), the spatia
more with theMC; than with theGR (Getis and Ord correlogram can be standardized into a standardized
1996, Anselin 1995, Sokat al.,1998a and 1998b). correlogram, in which the ordinate is standardized
Variogram approach: Geo-statistical methods deal Moran’s land Z. The shape of the standardized correlogram
with the question of how variance and covariance de provides inductions about the spatial pattern {gpat
pend on the instance between observations (i.ed-qu clusters and spatial outliers) and spatial corieiat
rats). Spatial autocorrelation, or distance depecele distance of a variable (Zhareg al., 1995). However,

is commonly modelled by fitting a variogram functio the standardized correlogram often has one or more
to an empirical variogram (Ilsaaks and Srivastava,positive correlation ranges. Zhamg al. (1998) have
1989; Haining, 1990; Cressie, 1991; Burrough andexplained that the closer positive correlation mng
McDonnell, 1998). An empirical variogram is a piift ~ represents the average size of the zone of sphtsérs,

half the squared difference between two obsengfile  that is, the spatial correlation distance.

semi-variance) against their distance in spaceaged for ~ Semi-Variogram: Calculating semi variogram (called

a series of distance classes. A simple variogramhelis  variogramsfor simplicity) is a basic geo-statistical measure
defined by the model family and the parametslls to determine the rate of change of a regionalizetble
(the average half squared difference of two inddpen along a specific orientation (usually distances).
observations)range (the maximum distance at which Semivariogram values are defined as the sum of
pairs of observations will influence each othenlda squared differences between pairs of points seguhrat
nugget(the variance within the sampling unit). by a certain distance divided by two times the nemalh

A correlogramis a graph in which autocorrelation values points in a distance class. By plotting experimenta
are plotted, on the ordinate, agaimtistance classes semi-variogram values against distance classegéph, es
among sites on the abscissa. Correlograms providebtain a semi-variogram. Like correlograms, semibgeams
evidence for the autocorrelation intensity, thee sif (decompose the spatial (or temporal) variability of
the zone of influence and the type of spatial patte# observed variables among distance classes. Thatuseu
the variable under study. The shape of a corrategra function plotted as the ordinate, callsemi-variance
gives indications about the spatial pattern ofdugable, is the numerator of equation given for Geary's C
as well as about the underlying generating progg&skal  function.

1986; Legendre and Fortin, 1989). Inference abloet t n-l =

underlying generating process can be made from the,r (d) = LZ Z W, (v — :)2

shape of the correlogram only when the correlogsam 2w i Wk '

globally significant; Oden (1984) and Legendre and
Fortin (1989) show how to compute such a globa] tes Y(d) is thus a non-standardized form of Gearysefficient.
whose aim is to correct for simultaneous multiple Yy may be seen as a measure of the error mean sufuare
testing. the estimate ofi using a valug/h distant from it byd.
Correlograms (Cliff and Ord 1981) can be computedThe calculation is repeated for different valuesdof
for single variablesMoran’s | or Geary'sc autocorrelation ~ This provides theample variogramwhich is a plot of

h=1li=h+1
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Fig. 2. Types of semi-variance plots (Robertson 2008).

the empirical values of variancedj(as a function of
distanced.

Generally, variograms tend to level off asill which

is equal to the variance of the variable the preseaf

a sill implies that the data are second-ordercstatiy.

The distance at which the variance levels offfisrred to

as therange (parameter); beyond that distance, the

sampling units are not spatially correlated. Tiseatitinuity
at the origin (non—zero intercept) is called thegget
effect the geo-statistical origin of the method trarespin
that name. It corresponds to the local variatiozuoing
at scales finer than the sampling interval, suckaagpling
error, fine-scale spatial variability, and measuzam

sin(ad

Holeeffect Model:y (d) = Co+ 0y p”

1-

)
An equivalent formis

where a' = =. (Co+Cy)

: Represents the value of g to-
wards which the dampening sine function tendsdbist
lize. Linear modely (d) = C, + bd where b is the
slope of the variogram model. A linear model wiih s
is obtained by adding the specificatign(d) = C if d 3
a. Pure nugget effect model:(d) =C, if d> 0;vy (d) =
0if d = 0. The second part applies to a point egémia
practice, observations have the size of the sagplin

error. The nugget effect is represented by thererrograin the error at that scale is always larger than

term #j in spatial structure model. It describes a portion

of variation which is not autocorrelated, or isoaotrelated

Conclusion

at a scale finer than can be detected by the sagpli Spatial autocorrelation is a widespread phenomémon

design. The parameter for the nugget effed€jsnd

ecology. The spread of plants by the processes of

the spatially structured component is represented b growth, vegetative reproduction, and limited seispetisal

Cy; the sill, C, is equal taCo+ C;. Therelative nugget
effectis Co/(Cp + Cy).
Commonly used variogram modelsAlthough a sample

variogram is a good descriptive summary of theiapat

contiguity of a variable, it does not provide &lkktsemi

-variance values needed for kriging. A model muest b

fitted to the sample variogram; the model will pdev
values of semi-variance for all the intermediatatices.

produces spatial autocorrelation etc are associtdd
spatial autocorrelation of plants. Spatial autaation
can be analyzed from two different perspectives.
Global autocorrelation analysis involves the study
the entire map pattern and generally asks the iguest
as to whether the pattern displays clustering dr no
Local autocorrelation, on the other hand, shisftitus

to explore within the global pattern to identifystiers or

According to Robertson (2008) there are four majorso called hot spots that may be either drivingaerall
types of model extensively utilized for variogram clustering pattern, or that reflect heterogeneitieat
approach and mathematical expression of these siodebtiepart from global pattern. Both types of methoaseh

are as follows:

Spherical Model: v (d) = Cy+C,

i [ :
1.5;—0.5(;) ifé<ayld)=Cifd>a

d
Exponential Model: v (d) = Cy+ (4 {1 —exp (—3 E)

a?y |
1—exp (—3;)

Gaussian Model:y(d) = Co+ (4

been extensively utilize in biological data setgHaracterize
remote sensing and Landsat TM imagery, to detetiasp
clustering of disease in epidemiological studies €he
study revealed the dominanceMéran’s | approach for
their extensive use compared to other methods. Our
review suggested the lesser efforts of using dulrique

for plant population in the Indian subcontinengréfore
there is an ample scope to utilize these techniqaes
qguantify the spatial relationships between différen
plants variables located on different habitats.
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