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Abstract: Analysis of spatial distribution in ecology is often influenced by spatial autocorrelation. In present paper 
various techniques related with quantification of spatial autocorrelation were categorized. Three broad categories 
namely global, local and variogram were identified and mathematically explained. Local measurers captures the 
many local spatial variation and spatial dependency while global measurements provide only one set of values that 
represent the extent of spatial autocorrelation across the entire study area. Global spatial autocorrelation measures 
the overall clustering of data and it included six well defines methods, namely, Global index of spatial autocorrelation, 
Joint count statistics, Moran’s I, Geary’s C ration, General G-statistics and Getis and Ord’s G. The study revealed 
that out of the six methods Moran’s I index was most frequently utilized in plant population study. Based on their 
similarity degree, local indicator of spatial association (LISA) can differentiate the neighbors in to hot and cold spots. 
Correlogram and variogram approaches are also given. 
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INTRODUCTION  

When a plant population or community is sampled, the 
samples have a spatial relationship with each other. To 
a certain extent, samples that are close to each other 
are more likely to be similar (Dale, 1999). For example 
if vegetation is sampled using a transect of small contiguous 
quadrates, adjacent quadrats are likely to be more  
similar than those at greater spacing. The lack of  
independence is referred to as to as spatial autocorrelation 
because the correlation occurs within the data set itself 
and arises because of spatial relationships. 
Spatial autocorrelation may be defined as the relationship 
among the values of a single variable that comes from 
the geographic arrangement of the areas in which these 
values occur. It measures the similarity of objects 
within an area; the degree to which a spatial phenomenon 
is correlated to itself in space (Cliff and Ord, 1981), 
the level of interdependence between the variables, the 
nature and strength of the interdependence, i.e. spatial 
autocorrelation is an assessment of the correlation of a 
variable in reference to spatial location of the variable. 
Assess if the values are interrelated, and if so is there a 
spatial pattern to the correlation, i.e. is there spatial 
autocorrelation. Weixelman and Riegel (2012) have 
utilized spatial autocorrelation to understand how to 
sample the community in mountain meadows and they 
have concluded that quantification of sampling point 
spacing is the prerequisite to ensure spatial and statistical 
independence for the presence/absence data. Roe et al., 
(2012) have questioned that how does the spatial structure 
of plant communities vary with the spatial grain and 
with the measure of species presence used and how 
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can communities most efficiently be sample for spatial 
autocorrelation?. They have sampled the area with 
using triabgular sampling scheme. In their study the 
percentage variation in species composition explained 
by distance, i.e. by spatial autocorrelation, was higher 
at larger grain. However, it reached a maximum of only 
15%. The nugget – the Y-intercept of the dissimilarity/
distance relation – has been seen as a measure of randomness 
in community composition. It was generally about 0.5 
dissimilarity on a 0–1 scale, although values in the 
range 0.7–0.8 were found at smaller grain sizes in the 
forest. The 90% distance, i.e. the distance at which 
dissimilarity reaches 90% of its final value, was interpretable 
only for the two sites where spatial autocorrelation was 
strong, but gave realistic estimates. On the basis of 
these results they have concluded that lack of increased 
spatial community predictability when including species 
abundances conforms to the majority of previous studies, 
indicated that the primary community control is on the 
presence of species, not their abundance. They have 
argued that the triangular sampling scheme used here 
was rapid, accurate, and efficient in its distribution of 
distances. 
The causes of spatial autocorrelation are manifold, but 
three factors particularly common (Legendre and 
Fortin, 1989; Legendre, 1993; Legendre and Legendre, 
1998) are:1) biological processes such as speciation, 
extinction, dispersal or species interactions are distance 
 -related; 2) non-linear relationships between environment 
and species are modeled erroneously as linear; 3) the 
statistical model fails to account for an important  
environmental determinant that in itself is spatially 
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structured and thus causes spatial structuring in the 
response (Besag, 1974). The second and third points 
are not always referred to as spatial autocorrelation, 
but rather spatial dependency (Legendre et al., 2002). 
Since they also lead to autocorrelated residuals, these 
are equally problematic. A fourth source of spatial 
autocorrelation relates to spatial resolution, because 
coarse grains lead to a spatial smoothing of data. In all 
of these cases, spatial autocorrelation may confound 
the analysis of species distribution data. Spatial  
autocorrelation may be seen as both an opportunity and 
a challenge for spatial analysis. It is an opportunity 
when it provides useful information for inference of 
process from pattern (Palma et al., 1999), for example, 
increasing our understanding of contagious biotic  
processes such as population growth, geographic dispersal, 
differential mortality, social organization or competition 
dynamics (Griffith and Peres-Neto, 2006). In most 
cases, however, the presence of spatial autocorrelation 
is seen as posing a serious shortcoming for hypothesis 
testing and prediction (Lennon, 2000; Dormann, 2007), 
because it violates the assumption of independently and 
identically distributed (i.e.) errors of most standard 
statistical procedures (Anselin, 2002) and hence inflates 
type I errors, occasionally even inverting the slope of 
relationships from non-spatial analysis (Ku¨hn, 2007). 
Spatial autocorrelation describes the correlation of the 
values of a single attribute related to the proximity of 
those values in geographic space (Tobin, 2004; Suzuki 
et al., 2008). Spatial autocorrelation relies on data  
interdependence and spatial statistics (Odland, 1988 
and Overmars et al., 2003). 
Spatial autocorrelation exists when there is systematic 
spatial variation in the values of a given variable.  This 
variation can exist in two forms called positive or 
negative spatial autocorrelation.  In the positive case, 
the value of a variable at a given location tends to be 
similar to the values of that variable in nearby  
locations.  This means that if the value of some variable is 
low in a given location, the presence of spatial autocorrelation 
indicates that nearby values are also low.  Conversely, 
negative spatial autocorrelation is characterized by 
dissimilar variant values in nearby locations.  For example, a 
low variant value may be surrounded by high values in 
nearby locations when negative spatial autocorrelation 
exists. A positive spatial autocorrelation refers to a 
map pattern where geographic features of similar value 
tend to cluster on a map, whereas a negative spatial 
autocorrelation indicates a map pattern in which geographic 
units of similar values scatter throughout the map. 
Positive spatial autocorrelation occurs when adjacent 
neighborhood locations have similar attribute values 
(Griffth, 2003; Almeida-Neto and Lewinsohn, 2004 
Mueller-Warrant et al., 2008). When no statistically 
significant spatial autocorrelation exists, the pattern of 
spatial distribution is considered random (Chou, 1997). 
Positive spatial autocorrelation over short distances is 
commonly observed and reflects phenomena that are 

contagious (clumped) over short distance, such a limited 
seed dispersal, clonal growth, nutrient-rich patches and 
positions on an environmental gradient. By contrast, 
negative spatial autocorrelation over short distances 
would suggest avoidance or competition among 
neighbors. 
Methods dealing with spatial autocorrelation: Spatial 
autocorrelation tools test whether the observed value of a 
variable at one locality is independent of values of the 
variable at neighboring localities. A variety of methods 
have consequently been developed to correct for the ef-
fects of spatial autocorrelation (partially reviewed by Miller 
et al., 2007), but only a few have made it into the eco-
logical literature.  
Before considering the use of modeling methods that 
account for spatial autocorrelation, it is a sensible first 
step to check whether spatial autocorrelation is in fact 
likely to impact the planned analyses, i.e. if model 
residuals indeed display spatial autocorrelation. Checking 
for spatial autocorrelation (SAC) has become a  
commonplace exercise in geography and ecology 
(Sokal and Oden, 1978 and Fortin and Dale, 2005). 
There are many indicators of spatial autocorrelation 
(Cliff and Ord, 1981; Goodchild, 1986; Isaaks and 
Shrivastava 1989; Haining, 1990; Chou, 1997; Perry et 
al., 2002; Su-Wei and Hsieh 2010). Diniz-Filho et al. 
(2003) and Kuhn (2007) have argued that the presence 
of residual spatial autocorrelation should always be 
tested for in spatial ecology and appropriate methods 
should be used if there is shown to be significant spatial 
autocorrelation 
Spatial autocorrelation is a widespread phenomenon in 
ecology (Fortin et al., 1989; Henebry, 1995; Torgersen 
et al., 1995; Koenig, 1998; Radeloff et al., 2000). The 
spread of plants by the processes of growth, vegetative 
reproduction, and limited seed dispersal produces spatial 
autocorrelation. Plant species respond individualistically 
to their environment, both directly and indirectly 
through species interactions. Autocorrelation can be 
used to compare the pattern of the same species in different 
environments, and the patterns of different species in 
the same environment. For plant analysis the spatial 
autocorrelations and its various uses were discussed by 
Heikkinen et al. (1996), Hawkins et al. (2003), 
Dorman (2007)  and Su-Wei and Hsieh (2010). Goslee 
(2006), Roe et al., (2012), Weixelman and Riegel 
(2012) and Mathur (2014)    have discussed the behaviors 
of different vegetation sampling methods in the presence 
of spatial autocorrelation. He concluded that transect 
methods especially responded poorly to spatial  
autocorrelation and randomly-located quadrats were 
more efficient in highly patchy environments, but large 
numbers of quadrats are needed for either method if 
rare species must be located. He emphasized that multi-scale 
methods are more robust to spatial autocorrelation, and 
more effective at identifying rare species because of 
the larger proportion of the total area sampled. Cover 
and especially frequency estimates are highly variable, 
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and depended on both the level of autocorrelation and 
the sampling method used.  
Spatial autocorrelation can be analyzed from two different 
perspectives. Global autocorrelation analysis involves 
the study of the entire map pattern and generally asks 
the question as to whether the pattern displays clustering 
or not. Local autocorrelation, on the other hand, shifts 
the focus to explore within the global pattern to identify 
clusters or so called hot spots that may be either driving 
the overall clustering pattern, or that reflect heterogeneities 
that depart from global pattern. Global statistics answer 
the question: is there a spatial pattern (Y/N)? Local 
statistics, on the other hand, answer the question: 
where is there spatial pattern (map) 
1. Global indicators of spatial autocorrelation includes 
methods like Gamma index of spatial autocorrelation, 
Join count statistics, Moran’s I, Geary’s C, and Getis 
and Ord’s G  
2. Local indicators of spatial autocorrelation includes 
local Moran’s I, Local Geary and Local Gi and Gi* 
statistics.  
3. The variogram approach to spatial association 
(geostatistical perspective) includes correlogram and 
semi variogram 
Defining contiguity:In spatial autocorrelation analysis 
some measure of contiguity is required. Contiguity has 
a rather broad definition depending on the research question, 
however, most analyses in spatial autocorrelation adhere 
to a common definition of neighbourhood relations. 
Namely, neighbourhood relations are defined as either 
rooks case, bishops case or queens (kings) case. These 
are rather simple and intuitive as their names suggest 
(Fig. 1). Rooks case contiguity is by a neighbourhood 
of 4 locations adjacent to each cell, Bishops only considers 
the diagonals of the relation and queens or kings case 
considers a neighbourhood of eight cells. These are the 
most common forms of contiguity used in spatial  
autocorrelation when considering continuous data in a 
raster format. Of these three the rooks case is the most 
commonly used and most programmes only will compute 
this case. 
1. Global autocorrelation 
Global spatial autocorrelation is a measure of the overall 
clustering of the data. Global indices of spatial autocorrelation 
have been used to evaluate the degree to which similar 

observations tend to occur near each other (Rogerson, 
1999; Waller and Gotway, 2004 and Jackson and 
Waller, 2005). Six different tests for global spatial 
autocorrelation includes the Gamma index of spatial 
autocorrelation, join count statistics, Moran’s I, 
Geary’s C, General G statistics and Getis and Ord’s G. 
The common elements of the various spatial autocorrelation 
models are (1) a matrix of values representing the association 
between locations and (2) values representing a vector 
of the attributes of the various locations (Getis, 1991). 
A. Gamma index of spatial autocorrelation: The 
Gamma Index of spatial autocorrelation consists of the 
application of the principle behind a general cross-
product statistic to measuring spatial autocorrelation 
Hubert et al. (1981). The idea is to assess whether two 
similarity matrices for n objects, i.e., n by n matrices A 
and B measure the same type of similarity. This is  
reflected in a so-called Gamma Index

. 
In other words, the statistic consists of the sum over all 
cross-products of matching elements (i,j) in the two 
matrices. The application of this principle to spatial 
autocorrelation consists of turning the first similarity 
matrix into a measure of attribute similarity and the 
second matrix into a measure of locational similarity. 
Naturally, the second matrix is the spatial weight matrix. 
The first matrix can be any reasonable measure of  
attribute similarity or dissimilarity, such as a cross-product, 
squared difference or absolute difference. 
Formally, then, the Gamma index is: 

 
Where wij are the elements of the weights matrix and 
aij are corresponding measures of attribute similarity. 
Inference for this statistic is based on a permutation 
approach in which the values are shuffled around 
among the locations and the statistic is recomputed 
each time. This creates a reference distribution for the 
statistic under the null hypothesis of spatial randomness.  
The observed statistic is then compared to this reference 
distribution and a pseudo-significance computed as 

 
Where m is the number of values from the reference 
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Fig. 1. Type of neighbourhoods relations. (Mathur 2014). 
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distribution that are equal to or greater than the observed 
join count and n is the number of permutations. The 
Gamma test is a two-sided test in the sense that both 
extremely high values (e.g., larger than any value in 
the reference distribution) and extremely low values 
(e.g., smaller than any value in the reference distribution) 
can be considered to be significant. Depending on how 
the measure of attribute similarity is defined, a high 
value will indicate positive or negative spatial autocorrelation, 
and vice versa. For example, for a cross-product measure 
of attribute similarity, high values indicate positive 
spatial autocorrelation and low values negative spatial 
autocorrelation. For a squared difference measure, it is 
the reverse. This is similar to the interpretation of the 
Moran’s I statistic and Geary’s C statistic respectively. 
Many spatial autocorrelation test statistics can be 
shown to be special cases of the Gamma index. In 
most instances, the Gamma index is an unstandardized 
version of the commonly used statistics. As such, the 
Gamma index is scale dependent, since no normalization 
is carried out (such as deviations from the mean or 
rescaling by the variance).  
B. Joint count  statistics: Join-count statistics are the 
simplest measure of spatial autocorrelation which were 
put forward by Moran in 1948. They are used for a binary 
variable, "0" and "1", which are often used referred to as 
“white” and “black”. A join links two neighboring areas; 
the possible types of joins are limited to white-white 
(WW), black-white (BW), and black-black (BB). Join-
counts are frequencies or counts of the numbers of (0, 0), 
(0, 1), and (1, 1) joins in the study area, and these num-
bers are compared to the expected numbers of them under 
the null hypothesis of no spatial autocorrelation. The ob-
served number of (0, 0), (0, 1) and (1, 1) joins are given 
by 

 

 

 
Where xi is the binary attribute value related to region 
i, 1 or 0, Cij is a value assigned to region i and region j 
by a spatial weighting function. Join-count statistics 
have been widely applied to analysis spatial autocorrelation 
in remote sensing data (Congalton, 1988; Chuang and 
Huang, 1992; Pugh and Congalton, 2001). Most of 
these applications on join-count are restrained on binary 
variables, the values of each spatial unit are either 1 
(black) or 0 (white).  
C. Moran’s I: Moran (1948) introduced the first meas-
ure of spatial autocorrelation in order to study stochas-
tic phenomena which are distributed in space in two or 
more dimensions. Moran’s I has been subsequently 
used in almost all studies employing spatial autocorre-

lation (Upton and Fingleton, 1985). Measuring the 
correlation (simultaneous change in value of two numeri-
cally valued random variables) among the neighboring 
observations in the pattern is done using the spatial 
autocorrelation statistic Moran’s I. Moran’s I is de-
fined as a measure of the correlation among neighbor-
ing observations in a pattern (Boots and Getis, 1988). 
Computation of Moran’s I is achieved by division of 
the spatial covariation by the total variation. Resultant 
values are in the range from approximately -1 to 1. Posi-
tive signage represents positive spatial autocorrelation, 
while the converse is true for negative signage. With a 
Zero result representing no spatial autocorrelation. 
 

 
  
 
 
 
Where N 

is the number of observation of the whole region 
 X is the mean of the variable 
X i is the variable value at a particular location 
X j is the variable value at another location 
Wij is a spatial weight between locations of i relative to j  
Moran’s I formula is related to Pearson’s correlation 
coefficient; its numerator is a covariance, comparing 
the values found at all pairs of points in turn, while its 
denominator is the maximum-likelihood estimator of 
the variance (i.e. division by n instead of n– 1); in Pearson’s 
r, the denominator is the product of the standard deviations 
of the two variables, whereas in Moran’s I there is 
only one variable involved. Moran’s I mainly differs 
from Pearson’s r in that the sums in the numerator and 
denominator do not involve the same number of terms; 
only the terms corresponding to distances within the 
given class are considered in the numerator whereas all 
pairs are taken into account in the denominator.  
Statistical test for Moran’s I:  Global Moran’s I can 
be standardized to Z and this can be calculated as  

 
E(I) = -1/(n-1) 
Where,  w-j* is the sum of all weights located in the 
row I, w*i  is the sum of all weights in the column i. The 
threshold of 1.96 can be applied to test the significance 
level of Z. If Z is greater than 1.96 or smaller than  

-1.96, it implies that the spatial autocorrelation was 
significant (Zhang and McGrath, 2004) 
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The tool computes a z-score and p-value indicating 
whether this difference is statistically significant or 
not. Index values cannot be interpreted directly; they 
can only be interpreted within the context of the null 
hypothesis. The p-value is a probability. For the pattern 
analysis tools, it is the probability that the observed 
spatial pattern was created by some random process. 
When the p-value is very small, it means it is very 
unlikely (small probability) that the observed spatial 
pattern is the result of random processes, so we can 
reject the null hypothesis. Z-scores are simply standard 
deviations. Both z-scores and p-values are associated 
with the standard normal distribution (Table 1) 
Very high or very low (negative) z-scores, associated 
with very small p-values, are found in the tails of the 
normal distribution. When we run a feature pattern 
analysis tool and it yields small p-values and either a 
very high or a very low z-score, this indicates it is 
unlikely that the observed spatial pattern reflects the 
theoretical random pattern represented by our null hypothesis 
(CSR). A statistically significant positive z score 
means that similar values cluster spatially. High values 
are found closer together, and low values are found 
closer together, than we would expect from an underlying 
random spatial process. A statistically significant negative 
Z score means that similar values are spatially dispersed. 
High values are found far away from other high values, 
and low values are found far away from other low values, 
and this dispersion is more pronounced than we would 
expect from an underlying random spatial process 
(Table 2). 
The spatial autocorrelation (Global Moran’s I) tool is 
an inferential statistic, which means that the results of 
the analysis are always interpreted within the context 
of its null hypothesis. For the Global Moran’s I statistic, 
the null hypothesis states that the attribute being analyzed 
is randomly distributed among the features in study 
area. 
Dray et al. (2008) have introduced multivariate spatial 
analysis based on Moran;s I (MULTISPATI) by introducing 
a row-sum standardized spatial weight matrix. Their 
analysis implies a compromise between relations 
among variables (multivariate analysis) and their spatial 
structure (autocorrelation). Chen et al. (2008) have 
quantified the strength of autocorrelation by using the 
Moran’s I. They have reported that for both α and β 
tree diversities, the distance of the spatial autocorrelation 
increased slightly at the scale of 10–15 and 200 km 
and decreased around 20–40 km. 
Modified version of Moran’s I:  Traditional calcula-
tion of Moran’s I for heterogeneous populations is not 
working well (Jackson et al., 2010). Therefore, several 
alternative version of Moran’s I have been proposed to 
account for heterogeneous population, for example 
Oden (1995); Waldhor (1996); Assuncao and Reis 
(1999) and Waller et al. (2006). Oden (1995) proposed 
the modified Moran’s I function (I*pop) he noted that 
symmetry is not required for I*pop and wij# 0 (but can 

be fix at any specified value). In order to capture the 
variability present in the region, Oden includes the first 
term in the numerator which is used to model the spa-
tial variation in a manner similar to conventional chi-
squared for heterogeneity rates. The odens’s I*pop can 
be written as 
Jackson et al. (2010) improves the original version of 
Moran’s I by incorporation of (a) a weight function in 
the variance computation (b) introducing the population 
density weight function and (c) conducting Monte 
Carlo simulation.  Their weight function is not only 
included in the differences of the geographic unit’s 

cases from the overall mean, but also in the calculation 
of the variance.  They also expand the definition of 
neighbors to a broader concept in the construction of 
Moran’s I (e.g., all geographic units included in a pre-specified 
geographic range will be considered to be neighbors of 
the geographic unit in the center. They have concluded 
that modified Moran’s I achieved higher power than 
Moran’s I and I*pop for evaluating global and local clustering 
patterns on geographic data with homogenous population 
D. Geary’s C (Contiguity) ratio: Computation of 
Geary's C results in a value within the range of 0 to +2. 
With zero being a strong positive spatial autocorrela-
tion, through to 2, which represents a strong negative 
spatial autocorrelation? Calculation is similar to 
Moran’s I, For Moran, the cross-product is based on the 
deviations from the mean for the two location values while 
for Geary, and the cross-product uses the actual values 
themselves at each location. Geary’s C statistic (Geary, 
1954) is based on the deviations in responses of each 
observation with one another: 

. 
The variance is: 

 
Where  S0, S1 and S2 are the same as in Moran’s I. 
However, interpretation of these values is very different, 
essentially the opposite.  Geary’s C varies on a scale 
from 0 to 2,  C of approximately 1 indicates no autocorrelation 
 /random, C of  0 indicates perfect positive autocorrelation 
/clustered, C of 2 indicates perfect negative autocorrelation  
/dispersed. Can convert to a -/+1 scale by: calculating 
C* = 1 – C 
Geary’s C coefficient is a distance-type function; it 
varies from 0 to some unspecified value larger than 1. 
Its numerator sums the squared differences between 
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values found at the various pairs of sites being compared. 
A Geary’s C correlogram varies as the reverse of a 
Moran’s I correlogram; strong autocorrelation produces 
high values of I and low values of C. Positive autocorrelation 
translates in values of c between 0 and 1 whereas negative 
autocorrelation produces values larger than 1. Hence, 
the reference ‘no correlation’ value is C= 1 in Geary’s 
correlograms. 
Statistical significance tests for Geary’s C: 
Similar to Moran which based on the normal frequency 
distribution with  

 
E(C) = 1 
A statistically significant positive Z score means high/
larger values cluster spatially larger values are found 
closer together than we would expect if the underlying 
spatial process was random. A statistically significant 
negative Z score means that low/smaller values cluster 
spatially smaller values are found closer together than 
we would expect if the underlying spatial process was 
random.  
Moran’s I and Geary's C coefficients are used to measure 
the degree of spatial autocorrelation displayed by a 
quantitative variable and to test the null hypothesis 
(Ho) that there is no significant spatial autocorrelation 
(positive: aggregation, segregation). Since these coefficients 
compare values for pairs of points, the set of available 
point pairs is divided into a number of distance classes. 
This number of classes is left to the user. Like Pearson's 
correlation coefficient, Moran’s I is based on the  
computation of cross products of centred data. Geary's 
C is a distance type coefficient, summing squared  
differences between adjacent pairs of values. Spatial 
autocorrelation analysis should not be performed with 
fewer than 30 localities, because the number of pairs of 
localities in each distance class would then become too 
small to produce significant results (Cliff and Ord 
1981; Legendre and Fortin 1989). Formulas for computing 
the coefficients as well as the standard error of the 
estimated statistics can be found in Cliff and Ord 
(1981), in Sokal and Oden (1978) and in Legendre and 
Legendre (1984) 
Both Moran’s I and Geary’s C are calculated at various 
distances, d. Both test the null hypothesis that there is 
no significance spatial autocorrelation among the 
mapped points with respect to the measured variable 
(Gibson, 2002 and Dormann et al., 2007). Moran’s I is 
produced by standardizing the spatial auto covariance 
by the variance of the data using a measure of the connectivity 
of the data. Geary’s C uses the sum of squared differences 
between pairs of data values as its measure of covariation. 
Moran’s I is a more global measurement and sensitive 
to extreme values of χ, , whereas Geary’s C is more 
sensitive to differences in small neighborhoods. In 
general, Moran’s I and Geary’s C result in similar  
conclusions. However, Moran’s I is preferred because 

it’s more powerful than Geary’s C. (Cliff and Ord, 
1981)  
E. General G-Statistic 
Moran’s I and Geary’s C will indicate clustering or 
positive spatial autocorrelation if high values (e.g. tree 
with high density) cluster together (often called hot 
spots) and/or if low values cluster together (tree with 
low density), but they cannot distinguish between these 
situations. The General G statistic distinguishes between hot 
spots and cold spots. It identifies spatial concentrations. 
G is relatively large if high values cluster together 
while G is relatively low if low values cluster together. 
The General G statistic is interpreted relative to its 
expected value (value for which there is no spatial  
association). Larger than expected value indicates potential 
“hot spot” while smaller than expected value indicates 
potential “cold spot”.  Z test statistic is used to test if 
the difference is sufficient to be statistically significant. 
Calculation of G must begin by identifying a neighborhood 
distance within which cluster is expected to occur. 

 
Where ; d is neighborhood distance; Wij weights matrix 
has only 1 or 0; 1 if j is within d distance of i; 0 if its 
beyond that distance 
Statistical Significance Tests: 

 
Expected value (if no concentration) for G is given by: 
VG = (E (G2)-E (G)2 

For the General G, the terms in the numerator (top) are 
calculated “within a distance bound (d),” and are then 
expressed relative to totals for the entire region under 
study. As with all of these measures, if adjacent x 
terms are both large with the same sign (indicating 
positive spatial association), the numerator (top) will 
be large 
F. Getis and Ord’s G:Method developed by Getis and 
Ord (1992; 1996) not only provide hypothesis testing 
to determine whether clustering has occurred within a 
dataset, but also provide information on the extent to 
which above and below average values cluster more 
strongly and identify local concentration of clustering 
(Laffan, 2006; Mueller-Warrant et al., 2008). The 
high/low clustering (Getis-Ord General G) tool is an 
inferential statistic, which means that the results of the 
analysis are interpreted within the context of the null  
hypothesis. The null hypothesis for the high/low clustering 
(General G) statistic states that there is no spatial clustering 
of feature values. When the p-value returned by this tool 
is small and statistically significant, the null hypothesis 
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can be rejected. If the null hypothesis is rejected, then the 
sign of the z-score becomes important. The high/low  
clustering (Getis-Ord General G) tool is most appropriate 
when we have a fairly even distribution of values and are 
looking for unexpected spatial spikes of high values.  
Unfortunately, when both the high and low values cluster, 
they tend to cancel each other out. The null hypothesis for 
both the high/low clustering (Getis-Ord General G) and 
the spatial autocorrelation (Global Moran’s I) tool is  
complete spatial randomness (CSR); values are randomly 
distributed among the features in the dataset, reflecting 
random spatial processes at work. However, the interpretation of 
z-scores for the high/low clustering tool is very different 
from the interpretation of z-scores for the spatial autocorrelation 
(Global Moran’s I) tool: It measures the degree of clustering 
for either high values or low values. Where yi represent 
the value of feature i, yj represent the vlaue of feature j, 
and wij is the weight assigned to each pair of features. 
Fox et al. (2012) have use global and local Moran’s I 
spatial autocorrelation statistics, Getis-Ord General G 
global high/low clustering and Getis-Ord*  test statistic 
techniques to evaluate the spread patterns of pine beetle 
infestation over time. 
Local Autocorrelation:Spatial autocorrelation can 
also be measured at the local level to evaluate the extent 
of autocorrelation within local neighbourhoods. Local 
measures captures the many local spatial variation and 
spatial dependency while global measurements provide 
only one set of values that represent the extent of spatial 
autocorrelation across the entire study area (Mueller 
-Warrant et al., 2008). As an operational definition, 
Anselin (1995) has defined the local indicator of spatial 
association (LISA) is as any statistic that satisfies the 
following two requirements: 1. the LISA for each  
observation gives an indication of the extent of significant 
spatial clustering of similar values around that observation; 
2. the sum of LISAs for all observations is proportional 
to a global indicator of spatial association. The general 
LISA can be used as the basis for a test on the null 
hypothesis of no local spatial association. For each 
location, LISA values allow for the computation of its 
similarity with its neighbours and also to test its  
significance. Five scenarios may emerge: 
1. Locations with high values with similar neighbours: 
high-high. Also known as  hot spots 

2. Locations with low values with similar neighbours: 
low-low. Also known as cold spots 

3. Locations with high values with low-value 
neighbours: high-low. Potential “spatial outliers. 
4. Locations with low values with high-value neighbours: 
low-high. Potential “spatial outliers. 
5. Locations with no significant local autocorrelation. 
These specific configurations can be first identified 
from a scatter plot showing observed values against the 
averaged value of their neighbours. This so-called 
Moran scatter plot is a useful exploratory tool. Once a 
significance level is set, values can also be plotted on a 
map to display the specific locations of hot spots and 

potential outliers. 
Recently, LISA has been successfully used in various 
research areas outside geography: to identify and test 
“hot spots” (positive autocorrelation or similarity) and 
“cold spots” (negative autocorrelation or dissimilarity) 
in biological data sets (Sokal et al., 1998a, 1998b), to 
characterize remote sensing and Landsat TM imagery 
(Wulder and Boots, 1998 and 2001), to detect spatial 
clustering of disease (i.e., spatial scan statistic) in  
epidemiological studies (Hjalmars et al., 1996; Kulldorff, 
1997; Gangnon and Clayton, 2001), and to study the 
spatial point patterns in a minefield and in a plot of 
pine saplings (Cressie  and Collins 2001a and 2001b). 
LISA is commonly formulated as a numerical measure 
of a random variable relating each individual datum to 
the values observed at neighboring locations. It is similar 
or compatible, at least conceptually, to traditional tree 
competition indices. Therefore, LISA would be an 
appropriate indicator for local spatial heterogeneity 
and useful for investigating the effects of neighboring 
trees of different species, sizes, and separation distances 
on the subject tree’s performance. Furthermore, LISA 
can be readily incorporated into visualization tools, 
such as a geographic information system (GIS), because 
it provides geo-referenced information at a local level 
(Unwin, 1996 and Lee and Wong, 2001). 
Shi and Zhang (2003) have utilized various LISA  
approaches to explore the relationship between LISA 
and traditional tree competition indices, to explore the 
possibility that LISA can be used as a predictor variable 
for predicting tree growth, and to demonstrate the  
usefulness of LISA for identifying and testing clusters 
of trees with similar or dissimilar sizes. They shows 
that like most of the competition indices, LISA had 
moderate correlations with tree basal area growth. For 
predicting the tree basal area growth in a linear regression 
model, the local Gi performed better than many (73%) 
competition indices at a plot aggregation level and had 
higher explanatory power than most (91%) competition 
indices at an individual plot level. Therefore, they  
recommended that LISA can replace the traditional 
competition indices for exploring the competitive 
status of neighboring trees, investigating the relationships 
between tree competition and growth, and estimating 
individual tree growth as a predictor variable in a forest 
growth simulator. The hot spots or cold spots identified 
by LISA provide useful information for the design of 
silvi-cultural and management treatments, such as  
selection thinning. 
The second requirement of the LISA permits the  
decomposition of a global coefficient of spatial  
autocorrelation into separate parts, making it possible 
to identify the individual locations that are major  
contributors to the global autocorrelation. Anselin 
(1995) described two LISAs to match the established 
global SA coefficients, I and c. These LISAs employ 
only those elements wij of the weight matrix W that 
have nonzero weights with locality i, whose local spatial 
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autocorrelation we wish to evaluate. The local Moran’s 
coefficient at locality is defined as 

 
A positive MCi indicates a spatial clustering of similar 
values (either high or low), whereas a negative MCi 
indicates a clustering of dissimilar values (e.g., a location 
with low values is surrounded by neighbors with high 
values). When the MCi is standardized by division by 
the variance. 

 
A pseudo-significant level of MCi can be obtained by a 
conditional randomization or permutation approach. A 
small P value (e.g., P < 0.05) indicates that location i is 
significantly associated with the relatively high values of 
the surrounding locations. A large P-value (e.g., P > 
0.95), on the other hand, indicates that location i is 
significantly associated with relatively low values of 
the surrounding locations.  Anselin (1995) outlined a 
local variant of the Geary ratio 

 
Unlike the local Moran, the local Geary is a measure 
of the weighted sum of square differences between the 
observed values at location i and those of its surrounding 
locations. The calculation of the pseudo-significant 

level P-value is similar to that of the local Moran after 
the standardization. A small P-value (P < 0.05) indicates 
a large GRi in extremes, which suggests a positive spatial 
association (i.e., similarity) of observation i with its 
surrounding observations, whereas a large P-value (P 
> 0.95) indicates a small GRi in extremes, which suggests 
a negative spatial association (i.e., dissimilarity) of 
observation i with its surrounding observations. From 
their previous work (Getis and Ord 1992), Ord and 
Getis (1995) defined local G statistics, which give an 
index of spatial clustering of a set of observations over 
a defined neighborhood 
 

 
The two equations differ depending on whether the 
location i around the clustering is measured is included 
in the calculation. There is no theory to guide which 
one to use in any particular situation, but the difference 
between the two is typically small. The Gi or Gi * 
compares the local (weighted) average with the global 
average. If high values of X (i.e., the variable under 
study) tend to cluster around i, the Gi or Gi* will be 
high; if low values of X tend to cluster around i, then 
the Gi or Gi * will be low; and no distinct clustering of 
high or low values of X around i will produce intermediate 
values of the Gi or Gi* (Fotheringham et al., 2000). 
After the standardization, a significant and positive Gi 
or Gi * indicates that the location i is surrounded by 
relatively large values, whereas a significant and negative 

Table 1. Statistical relationships between z and p values (Mathur 2014). 

z-score (Standard deviations) p-value (Probability) Confidence level 

< -1.65 or > +1.65 < 0.10 90% 

< -1.96 or > +1.96 < 0.05 95% 

< -2.58 or > +2.58 < 0.01 99% 

Table 2. Interpretation of the z and p values (Mathur 2014).  

The p-value is not statistically significant. We cannot reject the null hypothesis. It is quite possible that the 
spatial distribution of feature values is the result of random spatial 
processes. The observed spatial pattern of feature values could very 
well be one of many, many possible versions of complete spatial 
randomness (CSR). 

The p-value is statistically significant, and 
the z-score is positive. 

We may reject the null hypothesis. The spatial distribution of high 
values and/or low values in the dataset is more spatially clustered 
than would be expected if underlying spatial processes were  
random. 

The p-value is statistically significant, and 
the z-score is negative. 

We may reject the null hypothesis. The spatial distribution of high 
values and low values in the dataset is more spatially dispersed than 
would be expected if underlying spatial processes were random. A 
dispersed spatial pattern often reflects some type of competitive 
process—a feature with a high value repels other features with high 
values; similarly, a feature with a low value repels other features 
with low values. 
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Gi or Gi * indicates that the location i is surrounded by 
relatively small values. The Gi or Gi * statistics can be 
used to identify spatial agglomerative patterns with 
high-value clusters or low-value clusters. In summary, 
the local MCi measures joint covariance of neighboring 
locations. In other words, it measures the correlation of 
each Xi with all Xjs within the distance d of the subject 
location i. If these locations deviate significantly from 
the average in a given area and have similarly high or 
low values with the subject point, the local spatial 
autocorrelation is positive. If the subject location is 
widely different from the mean and has values unlike 
those of its neighbors, the local spatial autocorrelation 
is negative. The local GRi measures (squared) differences 
of the values between the subject and the neighboring 
locations. High values of GRi indicate negative spatial 
autocorrelation. Data values at the subject location and 
its neighbors that are all close to the mean are shown 
as a positive spatial autocorrelation by the GRi, but as 
weak or 0 autocorrelation by the MCi. The local Gi and 
Gi * measure overall concentration or lack of concentration 
of all pairs of (Xi, Xj) such that i and j are within the 
distance of each other. The Gi and Gi * tend to agree 
more with the MCi than with the GRi (Getis and Ord 
1996, Anselin 1995, Sokal et al., 1998a and 1998b).  
Variogram approach: Geo-statistical methods deal 
with the question of how variance and covariance de-
pend on the instance between observations (i.e., quad-
rats). Spatial autocorrelation, or distance dependence, 
is commonly modelled by fitting a variogram function 
to an empirical variogram (Isaaks and Srivastava, 
1989; Haining, 1990; Cressie, 1991; Burrough and 
McDonnell, 1998). An empirical variogram is a plot of 
half the squared difference between two observations (the 
semi-variance) against their distance in space, averaged for 
a series of distance classes. A simple variogram model is 
defined by the model family and the parameters sill 
(the average half squared difference of two independent 
observations), range (the maximum distance at which 
pairs of observations will influence each other), and 
nugget (the variance within the sampling unit).  
A correlogram is a graph in which autocorrelation values 
are plotted, on the ordinate, against distance classes 
among sites on the abscissa. Correlograms provide 
evidence for the autocorrelation intensity, the size of 
the zone of influence and the type of spatial pattern of 
the variable under study. The shape of a correlogram 
gives indications about the spatial pattern of the variable, 
as well as about the underlying generating process (Sokal 
1986; Legendre and Fortin, 1989). Inference about the 
underlying generating process can be made from the 
shape of the correlogram only when the correlogram is 
globally significant; Oden (1984) and Legendre and 
Fortin (1989) show how to compute such a global test, 
whose aim is to correct for simultaneous multiple  
testing. 
Correlograms (Cliff and Ord 1981) can be computed 
for single variables (Moran’s I or Geary’s c autocorrelation 

coefficients) or for multivariate data (Mantel correlogram). 
In all cases, a test of significance is available for each 
individual autocorrelation coefficient plotted in a  
correlogram. Similarly, a variogram is a graph in 
which semi-variance is plotted, on the ordinate, against 
distance classes among sites on the abscissa. In the geo
-statistical tradition, semi-variance statistics are not 
tested for significance, although they could be through 
the test developed for Geary’s C, when the condition 
of second order stationary is satisfied.  Statistical models 
may be fitted to variograms (linear, exponential, 
spherical, Gaussian, etc.); they allow the investigator to 
relate the observed structure to hypothesized generating 
processes or to produce interpolated maps by kriging. 
Because they measure the relationship between pairs 
of observation points located a certain distance apart, 
correlograms and variograms may be computed either 
for preferred geographic directions or, when the phe-
nomenon is assumed to be isotropic in space, in an  
all-directional way. Huo et al. (2012) have plotted spatial 
correlogram with Moran’s I. They have used this tool 
for mapping of soil heavy metals in Beijing, China. 
According to Legendre and Fortin (1989), the spatial 
correlogram can be standardized into a standardized 
correlogram, in which the ordinate is standardized 
Moran’s I and Z. The shape of the standardized correlogram 
provides inductions about the spatial pattern (spatial 
clusters and spatial outliers) and spatial correlation 
distance of a variable (Zhang et al., 1995). However, 
the standardized correlogram often has one or more 
positive correlation ranges. Zhang et al. (1998) have 
explained that the closer positive correlation range 
represents the average size of the zone of spatial clusters, 
that is, the spatial correlation distance. 
Semi-Variogram: Calculating semi variogram (called 
variograms for simplicity) is a basic geo-statistical measure 
to determine the rate of change of a regionalized variable 
along a specific orientation (usually distances). 
Semivariogram values are defined as the sum of 
squared differences between pairs of points separated 
by a certain distance divided by two times the number of 
points in a distance class. By plotting experimental  
semi-variogram values against distance classes in a graph, es 
obtain a semi-variogram. Like correlograms, semi variograms 
(decompose the spatial (or temporal) variability of 
observed variables among distance classes. The structure 
function plotted as the ordinate, called semi-variance, 
is the numerator of equation given for Geary’s C  
function. 

 
γ(d) is thus a non-standardized form of Geary’s c coefficient. 
γ may be seen as a measure of the error mean square of 
the estimate of yi using a value yh distant from it by d. 
The calculation is repeated for different values of d. 
This provides the sample variogram, which is a plot of 
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the empirical values of variance g(d) as a function of 
distance d. 
Generally, variograms tend to level off at a sill which 
is equal to the variance of the variable the presence of 
a sill implies that the data are second-order stationary. 
The distance at which the variance levels off is referred to 
as the range (parameter a); beyond that distance, the 
sampling units are not spatially correlated. The discontinuity 
at the origin (non–zero intercept) is called the nugget 
effect; the geo-statistical origin of the method transpires in 
that name. It corresponds to the local variation occurring 
at scales finer than the sampling interval, such as sampling 
error, fine-scale spatial variability, and measurement 
error. The nugget effect is represented by the error 
term *ij in spatial structure model. It describes a portion 
of variation which is not autocorrelated, or is autocorrelated 
at a scale finer than can be detected by the sampling 
design. The parameter for the nugget effect is C0 and 
the spatially structured component is represented by 
C1; the sill, C, is equal to C0+ C1. The relative nugget 
effect is C0/(C0 + C1). 
Commonly used variogram models: Although a sample 
variogram is a good descriptive summary of the spatial 
contiguity of a variable, it does not provide all the semi
-variance values needed for kriging. A model must be 
fitted to the sample variogram; the model will provide 
values of semi-variance for all the intermediate distances. 
According to Robertson (2008) there are four major 
types of model extensively utilized for variogram  
approach and mathematical expression of these models 
are as follows: 

 
Represents the value of g to-

wards which the dampening sine function tends to stabi-
lize.  Linear model: γ (d) = Co + bd where b is the 
slope of the variogram model. A linear model with sill 
is obtained by adding the specification: γ (d) = C if d ³ 
a. Pure nugget effect model: γ (d) = Co if d> o; γ (d) = 
0 if d = 0. The second part applies to a point estimate. In 
practice, observations have the size of the sampling 
grain the error at that scale is always larger than 0. 

Conclusion 

Spatial autocorrelation is a widespread phenomenon in 
ecology. The spread of plants by the processes of 
growth, vegetative reproduction, and limited seed dispersal 
produces spatial autocorrelation etc are associated with 
spatial autocorrelation of plants. Spatial autocorrelation 
can be analyzed from two different perspectives. 
Global autocorrelation analysis involves the study of 
the entire map pattern and generally asks the question 
as to whether the pattern displays clustering or not. 
Local autocorrelation, on the other hand, shifts the focus 
to explore within the global pattern to identify clusters or 
so called hot spots that may be either driving the overall 
clustering pattern, or that reflect heterogeneities that  
depart from global pattern. Both types of methods have 
been extensively utilize in biological data sets, to characterize 
remote sensing and Landsat TM imagery, to detect spatial 
clustering of disease in epidemiological studies etc. The 
study revealed the dominance of Moran’s I approach for 
their extensive use compared to other methods. Our  
review suggested the lesser efforts of using this technique 
for plant population in the Indian subcontinent; therefore 
there is an ample scope to utilize these techniques to 
quantify the spatial relationships between different 
plants variables located on different habitats.  

Fig. 2.  Types of semi-variance plots (Robertson 2008). 
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