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Review Article 

INTRODUCTION 

 

Agrochemical use is heavily required for both pest con-

trol and enhancing food production to feed millions of 

people worldwide (Al-Mamun, 2017). Agrochemicals 

such as pesticides are applied to eliminate pests, in-

cluding weeds, fungi, insects, and rodents (Warne and 

Reichelt- 

Brushett, 2023). In addition to boosting food and fiber 

production, pesticides reduce the spread of vector-

borne diseases and have significant economic benefits 

(Hayes et al., 2017). Since the green revolution of 

1960’s, pesticides have been largely responsible for a 

two-fold increase in worldwide crop production 

(Wijerathna-Yapa and Pathirana, 2022). Chemical pes-

ticides are thought to maintain nearly one-fifth (20%) of 

the yearly crop production, which makes them essential 

for maintaining the world's food demand (Blacquiere et 

al., 2012). Pesticides are broadly categorized based on 

their target pest as insecticides, termiticides, fungi-

cides, acaricides, bactericides and virucides (Nayak 

and Solanki, 2021). The main chemical groups of com-

monly used pesticides are neonicotinoids 

(Imidacloprid), phenyl-pyrazole (Fipronil), carbamates 

(Propoxur), organochlorine (DDT), pyrethroids 

(Allethrin), and organophosphates like Chloropyrifos 

that are frequently applied in fields (Sabra and Me-

hana, 2015; Chia et al., 2024). The continued con-

sumption of pesticides has detrimental impacts on the 

environment, including the aquatic ecosystem and hu-

man health (Kumar et al., 2023). 

In addition, pesticides also have severe impacts on 

aquatic creatures, including fish. Since fish circulate 

energy from lower to upper trophic levels, pesticides 
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start to cause biomagnifications in fish tissues, leading 

to decreased survivability and disturbing ecological bal-

ance (Almeida et al., 2021). Pesticides also exterminate 

terrestrial and aquatic wildlife by inducing adverse ef-

fects on vital organs, leading to chronic disease and an 

algal bloom in many waterbodies, which pose a growing 

danger to human health (Al-Mamun, 2017; Amenyogbe 

et al., 2021). Among various pesticides, IMI is a sys-

temic chloronicotinoid that utilized to manage several 

pests like rice hoppers, aphids, termites, beetles, psyl-

lids, and plant bugs in various crops such as rice, sun-

flowers, cereals, and vegetables (Abd-Eldaim et al., 

2023; Fouad et al., 2024a). IMI mainly attacks the cen-

tral nervous system of insects by blocking nAChR re-

ceptors at post-synaptic membrane (Rigosi and Carroll, 

2021). Its low volatility and bioaccumulation rate mainly 

minimizes the inhalation risks and makes it relatively 

safer for terrestrial ecosystems. However, because of 

its higher water solubility, IMI quickly pollutes the aquat-

ic environments through fields runoff, posing a signifi-

cant ecological risk (Fouad et al., 2024; Kamboj et al., 

2024). This review discusses the direct toxicity impacts 

of IMI on various freshwater fishes' developmental, 

physiological, behavioral, biochemical and haematologi-

cal aspects. In addition, LC50 concentration of IMI for 

various fishes and the concentration of IMI in different 

water samples is also reviewed (Table 1). However, the 

main concern has been the potential destructive effects 

of IMI on fish.    

    

IMIDACLOPRID AND ITS EXPOSURE TO AQUATIC 

HABITAT 

Imidacloprid (IMI), a neonicotinoid insecticide, had been 

brought to the pesticide industry by Bayer in 1991 

(Elbert et al., 2008). It was the first well-recognized Ne-

onicotinoid to be marketed and used for household and 

agricultural protection (Abou-Donia et al., 2008). Tomlin 

(1997) said that it is a transparent crystalline chemi-

cal belonging to the Chloronicotinyl (neonicotinoid) mo-

lecular family with the formula C9H10ClN5O2 (Fig. 1). It 

is one of the most valuable pesticides because of its 

high water solubility (hydrophilic), low volatility, and 

excellent effectiveness at small concentrations (Vieira 

et al., 2018). IMI is effective in combating sucking, soil, 

and chewing insect pests (Lewis et al., 2016). Since its 

introduction, IMI has become the insecticide with the 

highest sales globally (Casida, 2018). This neuroactive 

chemical competes with normal nerve impulses by dis-

rupting the nicotinic acetylcholine receptors (nAChR) at 

postsynaptic junction of insect pest (Mohr et al., 

2012). IMI dissolves readily in aqueous solution. Stabil-

ity of IMI is greatly influenced by the pH of water, which 

has longer half-life and persists in alkaline medium. 

The half-lives in soil can vary from 174 to 578 days; in 

water and water-sediment, they are 30 and 129 days, 

respectively (Petkovic et al., 2022). Toxic residues of 

IMI, have been observed in crops, meals, and surface 

and even consumable water throughout the world 

(Table 2). Due to high water solubility, IMI enters the 

aquatic ecosystem through surface runoff, threatening 

the non-target aquatic life, including fish (Shan et al., 

2020).  

 

Toxic effects of imidacloprid in fishes 

Indirect effects 

Fish tend to be several orders of magnitude less sensi-

tive to direct short-term exposure of IMI, as seen by the 

Fig. 1. Chemical structure formula of Imidacloprid (IMI) 

(Verebova and Stanicova, 2022) 

Fig. 2. Pesticide occurrence in aquatic system (Rajmohan et al., 2020; Pradhan et al., 2022) 
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aquatic species sensitivity distribution on survival after 

a few days of exposure (Gibbons et al., 2015). It has 

been suggested that fish may suffer indirect impacts, 

such as a decrease in the quantity and quality of crus-

taceans available for food (Chagnon et al., 2015). Re-

duced dissolved oxygen levels in water by promoting 

algal bloom and macrophytes, which blocked the sun-

light, decreased photosynthesis and slowed the break-

down of IMI, thus extending its harmful effects on mac-

ro- and micro-crustaceans that indirectly affect fish 

health (Sumon et al., 2018; Gajula et al., 2023). An 

experiment revealed that IMI exposure reduced a large 

number of zooplankton and other aquatic invertebrates, 

leading to increased dominance of rotifers and cyano-

bacteria, which indirectly affected food availability and 

habitat quality for fish (Yao et al., 2021; Cabrera et al., 

2023). It has also been confirmed that IMI adversely 

affects the zooplankton population in rice fields, which 

had an indirect adverse effect on inhabiting fish growth 

that used to consume the zooplankton species 

(Hayasaka et al., 2012; Suzuki et al., 2024). 

 

Direct effects 

In general, the direct impacts of pesticides include the 

instant death of animals or sub-lethal consequences 

related to development and reproduction, depending 

on the degree of toxicity (Sanchez-Bayo, 2011). Simi-

larly, Fishes exposed to high concentrations of IMI re-

sulted in instant or delayed mortality. For example, fish 

C. gariepinus exposed to 190mg/l and L. rohita ex-

posed to 900mg/l of IMI resulted in heavy mortality of 

exposed fishes (Qadir et al., 2014; Osazee et al., 

2024). However, at sublethal concentrations, IMI treat-

ment may have resulted in several health impacts in-

cluding decreased acetylcholinesterase activity, histo-

pathological damage in various tissues, elevated oxida-

tive stress markers, DNA damage in various tissues, 

altered haemato-biochemical profiles, decreased plas-

ma proteins, albumin, and globulin levels in exposed 

fishes as described below. 

Name of fish LC50 of IMI References 

Danio rerio 4.90 – 8.37 mg/L (96h) Ding et al., 2004 

Danio rerio 408-1160 mg/L (48h) Tisler et al., 2009 

Carassius auratus 
Cyprinus carpio 
Ctenopharyngodon idella 

24.8 mg/L (96h) 
6.68 mg/L (96h) 
13.2 mg/L (96h) 

Gradila, 2013 

Labeo rohita 0.840 mg/L (96h) Desai and Parikh, 2014 

Labeo rohita 550 mg/L (96h) Qadir et al., 2016 

Cyprinus carpio (Eggs) 78 ppm (48h) Tyor and Harkrishan, 2016 

Aequidens facetus 10 ppm (96h) Iturburu et al., 2017 

Ctenopharyngodon Idella (Juvenile) 300 mg/L (96h) Moghaddasi, 2017 

Cyprinus carpio (Juvenile) 200 ppm (96h) Suman et al., 2017 

Embryo of Danio rerio 
Larvae of Danio rerio 
Juvenile of Danio rerio 
Adult of Danio rerio 

121.6 mg/L (96h) 
128.9 mg/L (96h) 
26.39 mg/L (96h) 
76.08 mg/L (96h) 

Wu et al., 2018 

Cyprinus carpio (Embryos) 

93719 µg/L (24h) 
21691 µg/L (48h) 
2352.7 µg/L (72h) 
1292.6 µg/L (96h) 

Islam et al., 2019 

Danio rerio 

0.423 ml/L (24h) 
0.352 ml/L (48h) 
0.297 ml/L (72h) 
0.270 ml/L (96h) 

Yadav et al., 2020 

Oreochromis niloticus (Juveniles) 175.32 ppm (72h) El-Garawani et al., 2021 

Clarias gariepinus 2.03 µg/L (96h) Rahman et al., 2022 

Crenicichla sancticaroli 
2.5 µg/L (24h) 
1.25 µg/L (48h) 

Queiroz et al., 2022 

Poecilia reticulate 
120.0 mg/L (96h) 
122.65 mg/L 

Queiroz et al., 2022 

Cnesterodon decemmaculatus 
55.92 mg/L (24h) 
47.34 mg/L (48h) 
40.93 mg/L (72h) 

de Arcaute et al., 2023 

Clarias gariepinus 64. 88 mg/L (96h) Erhunmwunse et al., 2023 

Pethia conchonius 227.33 mg/L (96h) Dutta et al., 2024 

Table 1. Lethal Concentration 50 (LC50) of Imidacloprid (IMI) for a variety of fishes 
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Imidacloprid induced behavioural changes in fish 

Behaviour is a reaction that demonstrates how external 

stimuli influence the physiological activities of organ-

isms (Saaristo et al., 2018). The behavioural complica-

tion studied by many researchers may be linked to IMI 

impact on the fish Neurological systems through modi-

fying acetylcholinesterase levels that lead to disturbed 

brain activity (Rahman et al., 2022). In C. carpio IMI 

exposure is well known for inducing abnormal behav-

iour like hyper excitations, erratic swimming, jerky 

movements, loss of equilibrium, restless, excess mucus 

secretion, increased mouth gulping for oxygen and 

operculum motion (Bhardwaj et al., 2020a). Other toxic 

effects include sleepiness, poor swimming, elevated 

fins, colour darkness, high mortality rates, frequent 

opercular and fin motions, loss of harmony and lethar-

gic behaviour in L. rohita and O. niloticus even at the 

lowest dose of IMI (Desai and Parikh, 2014 and El-

Garawani et al., 2022). Fish D. rerio also exhibited er-

ratic motions and impaired mobility, with freezing be-

havior in the bottom part of the container on exposure 

of IMI at a dose of 45 µg/L (Guerra et al., 2021). Exces-

sive mucus secretion is another response against IMI 

toxicity that creates a barrier  between toxins and skin, 

to minimise the risk of contact and its irritating impacts 

(Patil and David, 2008).  

 

Histopathological alterations  

Gills  

The gills are an essential component of fish anatomy, 

carrying out several physiological processes like gas 

exchange (respiration), waste removal (Excretion) and 

osmoregulation (Evans et al., 2005). Because of their 

susceptible nature and proximity to the surrounding 

medium, fish gills are primarily regarded as a mirror of 

water quality and strong bioindicators of toxicant expo-

sure (Erkmen et al., 2017). A number of severe histo-

pathological alterations, including hyperplasia, epithelial 

lifting, lamellar fusion, oedema, thickening of lamellae 

epithelium, dilatation of congested capillaries, and cen-

Countries 
Surface water  

concentration 
References 

Surface water, Rio grande do Sul, Brazil 126 ng/L Bortoluzzi et al., 2007 

California, USA Imperial 

Salinas 

Santa maria 

3.29 µg/L 

3.05 µg/L 

1.38 µg/L 

Starner and Goh, 2012 

Guadalquivir river basin Spain 2.3-19.2 ng/L Masia et al., 2013 

Sydney (Australia) 4.6 µg/L 
Sanchez-Bayo and Hyne, 

2014 
Stream water drains potato field (Eastern Canada) 11.9 µg/L Morrissey et al., 2015 

Great smoky Mountains national park (southern Aplanches) 

Stream (alum creek) 

(Indian camp creek) 

(Kingfisher creek) 

28.5 ng/L 

36.8 ng/L 

78.0 ng/L 

33.6 ng/L 

Benton et al., 2016 

Southern Ontario (Canada) 230 ng/L Struger et al., 2017 

Danube river, 

Romania tributaries 

Arges river 

Olt river 

Osaka city Japan 

0.5-8.1 ng/L 

3.4- 8.2 ng/L 

3.2-3.9 ng/L 

7-25 ng/L 

Iancu et al., 2019 

  

Seven watersheds, Ontario, Canada 1333 ng/L Metcalfe et al., 2019 

Northern Portugal 

Ave river (summer) 

Sousa river (summer) 

Sousa river (Autumn) 

  

480 ng/L 

208 ng/L 

213 ng/L 

Sousa et al., 2019 

South china (Pearl River) 

Spring 

Summer 

WWTP effluents 

31.0 ng/L 

55.7 ng/L 

180 ng/L 

89.1ng/L 

Zhang et al., 2019 

Tengi river, Malaysia 57.7 ng/L Elfikrie et al., 2020 

Great lakes basin (Ontario Canada) 

Taihu lake (china) 

Wet season 

1333 ng/L 

41 ng/L 

69 ng/L 

Wang et al., 2021 

Table 2. Reported concentrations of Imidacloprid (IMI) in surface water worldwide 
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tral venous sinus in filaments, were observed in gill 

sections of fish (Nile tilapia) after exposure of IMI 

(Gunal et al., 2020; El-Garawani et al., 2022). Similar 

types of deformities were also reported in fish 

O. mossambicus and C. carpio due to exposure to dif-

ferent concentrations of IMI (Patel et al., 2016; Ozdemir 

et al., 2018; Harkrishan et al., 2020). 

 

Kidney 

The kidney serves a critical role in regulating bodily 

fluid equilibrium and eliminating harmful xenobiotic resi-

dues. Numerous investigations revealed that pesticides 

resulted in various histological changes in the renal 

tissues of fish (Rohani, 2023). Several structural altera-

tions in the kidney of C. gariepinus like swelling of renal 

tubule and Lymphocytes, balloon necrosis, renal cell 

depletion, glomerulus distortion, severe necrosis, vacu-

olation of glandular epithelium, renal tubular and sinus-

oidal enlargement, tissue degeneration, renal tubular 

necrosis, exudates in tubules, necrosis of single cell, 

renal epithelium desquamation, and degenerated renal 

tubules etc. were observed after exposure to IMI 

(Kurikose et al., 2022). Research conducted by 

Kochetkov et al. (2023) reported some IMI induces 

changes in the kidney of D. rerio, like vacuolization of 

the cuboidal epithelium of the proximal tubules, in-

creased Bowman’s space and renal corpuscle area, 

thickened proximal tubule epithelium, cell debris within 

the inflammatory areas, mononuclear leukocytes, focal 

inflammatory foci contained epithelioid macrophage 

cells containing large nuclei. Similarly, IMI also causes 

various alterations in renal tissue of exposed fish, in-

cluding necrosis, vacuolation, pyknosis of the nucleus 

and swelling in the tubular lumen, infiltration of W.B.C 

and growing hematopoietic tissues, tubular epithelial 

condensation, fusion and fuzziness of cell margins, 

karyorrhexis and karyolysis (Qadir and Iqbal, 2016).  

 

Liver 

The liver of fish functions as the primary organ for mul-

tiple metabolic reactions along with alterations in liver 

histology, and it is mainly essential for detoxification, 

enzyme synthesis, and biochemical processes, which 

serves as a crucial biomarker in ecotoxicity studies of 

fish (Erkmen et al., 2017; Sharma et al., 2022). Gunal 

et al. (2020) reported IMI-induced deformities in the 

liver of O. niloticus, including increased lipid accumula-

tion, passive hyperemia, and mononuclear cell infiltra-

tion, causing inflammation and vacuolization. However, 

necrosis of hepatic tissues and hydropic deterioration 

were observed in C. carpio when exposed to a high 

dose of IMI at 140 mgL−1 (Ozdemir et al., 2018). Sever-

al liver alterations such as leukocyte infiltration, vacuo-

lation of cytoplasm, hemorrhage, liver cell necrosis and 

central hepatic vein wall dilatation and congestion were 

all observed in O. niloticus IMI exposure (Ramirez-

Coronel et al., 2023; Al-Awadhi et al., 2024). Some 

hepatic alterations were also revealed in D. rerio, in-

cluding foci of necrosis near the bile ducts, cells with 

cariorexis, leukocyte infiltration, PAS-positive granules 

and enlarged nuclei of hepatocytes. These changes 

indicate an increased detoxification response to the 

presence of IMI (Kochetkov et al., 2023). In addition, 

pyknotic nuclei, hepatocyte loss, hydropic degeneration 

by accumulation of water and electrolytes inside the 

cell, nucleus dislocation and blood sinusoidal dilatation 

were noted in various fishes exposed to IMI at different 

doses (Qadir and Iqbal, 2016 and Ansoar-Rodriguez et 

al., 2016). 

 

Intestine 

Like other toxicants, IMI also disrupts the digestive pro-

cesses of fish by causing distinct alterations in the mus-

cularis, mucosa, submucosa, and villi membranes of 

intestine. Fusion and hyperplasia of enterocytes, dis-

ruption in villus morphology and lamina degeneration, 

bifurcation and inflammatory cell infiltrate, vacuolization 

and necrotic cells in muscularis externa of intestine 

observed in IMI treated zebrafish (Akbulut and Ertug, 

2019). Alterations like McKnight cells (apoptotic) in 

some areas of epithelium, excess presence of Rodlet 

cells and intraepithelial leukocytes clusters in the muco-

sa, lowered height of adsorbing epithelium and in-

creased thickness of the lamina propria were also ob-

served in renal tissue of D. rerio (Kochetkov et al., 

2023). Miao et al. (2022) investigated specific changes 

in the common carp intestine, observing the lack of 

microvilli and columnar cell disorganization, contrib-

uting to reduced submucosal thickness. Uplifted muco-

sa, inflammation, distorted muscles and mucosa, ede-

ma, hemorrhage, atrophy, and necrotic bodies were 

observed in intestinal tissue of C. carpio after IMI treat-

ment at low to high doses, which indicated several ab-

normalities in gut (Kamboj et al., 2024). All these altera-

tions disrupt the function of the intestinal barrier and gut 

permeability, reduce villus heights and increase mucus 

secretion, which could further affect the status of nutri-

ent absorption (Luo et al., 2021).  

 

Gonads 

Exposure to pesticides, including IMI results in various 

deformities in reproductive tissues that adversely affect 

the reproductive performances of exposed fish. For 

example, histological changes like interstitial fibrosis, 

hypertrophy in Leydig and spermatogenic cells, de-

struction of seminiferous tubules in the testicular tissue 

of fish (Kapoor et al., 2011; Akbulut, 2021). Moreover, a 

variety of abnormalities like oocyte structural degrada-

tion, autolysis, increase in atretic oocytes, curling and 

thickening of zona radiata, vacuolization in cortical al-

veoli and perifollicular layers opening seemed common 

in ovarian tissue of IMI exposed fish (Akbulut, 2021). 
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Similarly, IMI exposure in M. anguillicaudatus also re-

sulted in disorganized lobules with expanded gaps, 

leading to reduced ratios of spermatozoa and sperma-

tids (Xia et al., 2016).  

Nervous system 

Nervous tissue is vital for maintaining control and coor-

dination; therefore, its integrity and functioning are very 

important. IMI is a neurotoxic chemical and its expo-

sure induces neuronal degeneration, vacuolation, ne-

crosis, enlarged neurocytes, pyknotic nuclei, spongio-

sis, mononuclear infiltration, and fragmented nuclei in 

cerebrum and optic lobe of C. carpio (Gernhofer et al., 

2001; Harkrishan et al., 2020). Similarly, Zebrafish (D. 

rerio) exposed to imidacloprid experienced disturb so-

cial act like mutual attentiveness and attraction due to 

histological alteration in optic tectum of brain, oxidative 

stress, inflammation and apoptosis of nerve cells 

(Chung et al., 2023). 

Early developmental aspects 

Exposure to toxicants during early development dis-

turbs the process of normal development and induces 

disorders as well as impairment that reduce the survival 

chance of exposed fish. Initial developmental stages of 

fish show a significant vulnerability to wide-

spread toxicants including IMI (Tyor and Harkrishan, 

2016). IMI creates great risks for non-target aquatic life, 

including fish, by affecting embryological developments 

due to its genotoxicity (Dutta et al., 2024). A number of 

defects, including malformed tail with unhatched em-

bryo, yolk-sac swelling, impaired body structures and 

head forms, have been reported in the embryos of C. 

carpio treated with varied concentrations of IMI (Islam 

et al., 2019). In addition, undeveloped bodies like coma 

and oval-shaped, vertebral axis curving, a single-eyed 

hatchling, distorted head, a flexure tail, and distorted 

yolk sac were also common in larvae of C. carpio ex-

posed to IMI (Tyor and Harkrishan, 2016). IMI exposure 

also induces a reduced growth rate with the high mor-

tality rate in fish during the early stage of development 

(Bhardwaj et al., 2022). Teratogenic effects of IMI on 

fish larvae include aberrant spinal curvature, defective 

jaws and skull cavity, profuse bleeding, lordosis or sco-

liosis, inflammation of the yolk, abnormal bones and 

tail, yolk sac retention, poorly developed eyeball and 

barbels, lowered hatching rate along with decreased 

cardiac output (Erhunmwunse et al., 2023). IMI also 

induces pre-mature hatching and reduces the hatching 

period in the exposed eggs up to four hours (Islam et 

al., 2019; Bhardwaj et al., 2022).     

 

Haematological aspects 

The hematologic index is a useful tool for evaluating 

different blood parameters and determining the sub-

lethal effects of contaminants on the health of aquatic 

species, including fish (Witeska et al., 2023). Similar to 

other pesticides, low dosages of IMI that are insufficient 

to kill fish in spite induces haematological alterations 

frequently (Table 3). Changed and reduced leucocyte 

count is a general response that impairs the immuno-

logical defense of stressed fish (Rahman et al., 2022a; 

Razaa et al., 2023). In addition, intense anaemic condi-

tions with declined haematological parameters like hae-

moglobin, erythrocyte, PCV, MCV, and platelet levels 

are another response induced by sublethal dose of IMI, 

which reduces their formation in stressed fish (Saaristo 

et al., 2018; Rahman et al., 2023; Gajula et al., 2025). 

Declined hematological parameters, Anemic changes 

and disruptions in osmoregulatory systems could result 

from adverse effects caused by pesticides on the blood

-forming organs, resulting in erythrocytic damage and 

imbalanced blood cell formation rate (Bhardwaj et al., 

2020; Shahzadi et al., 2024). In addition, IMI toxicity 

also induces a notable decrease in the plasma protein 

content of exposed fish (Americo-Pinheiro et al., 2019).  

Biochemical aspects  

Exposure to IMI also causes chemical stress, leading to 

altered biochemical processes and even causing quali-

tative and quantitative impairment in proteins, lipids, 

nucleic acid, and even cell (Vieira et al., 2018; Guerra 

et al., 2021). Toxicity of IMI induces significant reduc-

tion in exposed fish protein content in the muscles and 

liver. Enhanced catabolic reactions and over utilization 

of amino acids under stress conditions are the main 

causes of the reduction in protein content (Vishal et al., 

2012). Declined protein content indicates the increased 

rate of proteolytic action or protein breakdown in order 

to fulfil the energy demand (Vijayan et al., 2018). How-

ever, over time, exposure to IMI increases the chemical 

stress, resulting in declined composition of amino acids 

such as glycine, serine, and arginine in exposed fish 

(Qadir et al., 2017). IMI treatment also induces a re-

markably rise in some serum protein levels, like creati-

nine, and others, such as globulin and albumin, in fish-

es like groups of C. idella and C. auratus (Ilahi et al., 

2018). Elevated glutathione S-transferase (GST) in 

brain cells of fish D. rerio along with liver and muscle 

tissues of O. niloticus after exposure to IMI indicate 

protein damage (Guerra et al., 2021; Temiz and Da-

yangac, 2024). In addition to alterations in protein con-

tent, IMI exposure also causes a decline in the glyco-

gen level in liver and muscle tissues that might re-

sult in direct overconsumption of glycogen content for 

energy generation under stressed conditions (Ismayil 

and Joseph, 2020). Increased malondialdehyde (MDA) 

content levels and ROS generation is another biochem-

ical alteration induced by IMI in treated fish (Ge et al., 

2015). Catalase (CAT) and Superoxide dismutase 

(SOD) are key enzymes acting as primary oxidative 

defense systems, were markedly elevated in the gut of 

D. rerio along with the residual product of fatty acid 

peroxidation, i.e. malondialdehyde (MDA) after IMI ex-

posure which indicating oxidative damage (Hong et al., 
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2020; Luo et al., 2021). However, Numerous studies 

have reported that prolonged exposure to IMI leads to a 

decrease in the levels of CAT and SOD in the hepatic 

tissue of O. niloticus, indicating that the decline in their 

activities may be attributed to toxicity-induced oxidative 

stress occurring at a later stage resulting in liver dam-

age (Attia et al., 2021; Huang et al., 2023).  

Hong et al. (2018) reported that IMI exposure resulted 

in decreased hepatic ALP activity which might disturb 

the membrane characteristics and reduced CRP and 

C3 (complement proteins) levels resulting in impaired 

detoxifying capacity of fish liver. It has also been report-

ed that exposure of IMI induces significant oxidative 

damage or lipid peroxidation in both gill and liver tissue 

of fish O. niloticus, to which young fish are more prone 

(Vieira et al., 2018 and Gunal et al., 2020). Elevated 

hepatic enzymes like ALT, ALP, AST, and LDH, along 

with reduced SOD and CAT significantly resulted in the 

hepatic injury of C. carpio (Ramirez-Coronel et al., 

2023). Similarly, IMI exposure to C. gariepinus and O. 

niloticus also showed a significant increase in ALT and 

AST enzymes in blood that reflects the hepatic stress 

due to ROS generation (Abdel Rahman et al., 2022; 

Subaramaniyam et al., 2023; Al-Awadhi et al., 2024). 

Immunological response to exposure to IMI involves a 

remarkable decrease of serum IgM and lysozyme ac-

tion, resulting in declined innate immunity of stressed 

fish (Hong et al., 2018; Ramirez-Coronel et al., 2023).  

 

Genotoxic aspects 

Genotoxicity of a substance can be measured in terms 

of its capacity to induce destructive alterations in the 

genetic material like DNA or mRNA, leading to genetic 

mutations and damage to the genome. Substances 

with genotoxic properties damage the DNA and also 

cause disruptions in cellular structures and activities 

(Muazzam et al., 2019). Genotoxic impacts of IMI, have 

been tested on several fishes like M. Anguillicaudatus, 

P. Lineatus, A. facetus (Xia et al., 2016; Iturburu et al., 

2017; Viera et al., 2018). Alvim and Martinez (2019) 

reported nuclear membrane destruction and DNA dam-

age in the liver, gills and RBC’s of P. lineatus after ex-

posure of IMI, resulting in higher ENA (Erythrocytic nu-

clear abnormalities) formation. Almeida et al. (2021) 

also reported similar observations like ENA, SN 

(segmented nuclei) and KN (kidney-shaped nuclei) in 

A. altiparanae when treated with IMI. IMI exposure 

causes Nuclear aberrations such as chromosome frag-

mentation in dividing cells and contribute to the accu-

mulation of micronuclei (MN) and ENA formation, indi-

cating as a crucial biomarker of genotoxicity (Ispir & 

Ozcan, 2021; El-Garawani et al., 2022). 

 Similarly, IMI exposed fish (O. niloticus) also exhibit 

increased MN and ENA frequency, might be a result of 

mitotic spindle malfunction or broken nucleic acid 

strands of the hematopoietic tissues (El-garawani et al., 

2021). Research reported that DNA damage in the liver 

of O. niloticus after IMI exposure is caused by unfolding 

and disruption of genetic material, resulting in genotoxi-

city (Ramirez-Coronel et al., 2023). Single strand 

breaks, alkali-labile sites, increased length or moments 

of the olive tail and delayed-repair sites in exposed fish-

es also indicate potential genotoxicity of IMI (Ansoar-

Rodriguez et al., 2015; Muazzam et al., 2019). De-

creased percentage of head DNA, increased Tail DNA, 

Tail length and olive moments indicated the DNA dam-

age in RBC’s of C. carpio followed different IMI expo-

sures (Kamboj et al., 2024). 

 

POSSIBLE CONTROL MEASURES 

Integrated Pest Management (IPM) 

Insects, weeds, and viruses adversely impact global 

agriculture, resulting in a remarkable loss in agricultural 

output worldwide. When evaluated against food securi-

Species Dose Effects References 

Cyprinus carpio 40ppm 
High leucocyte count, drop in Hb 

level, increase clotting time 
Suman et al., 2017 

Ctenopharyngo-

don idella 
2ppm 

Increase neutrophil, Decreased 

platelet count, drop Hb level 
Ilahi et al., 2018 

Carassius auratus 2ppm 

Elevate T.L.C level, lymphocyte 

count, Declined platelet count and 

Hb level 

Ilahi et al., 2018 

Oriochromis nilot-

icus 

0.01 μg/l 

0.05 μg/l 

14.50-28.1 mg L-1 

Declined RBCs counts, Hb concen-

tration, and HCT levels, increased 

WBCs, Elevated MCV and MCH val-

ues 

Americo-Pinheiro et al., 2019; 

Naiel et al., 2020; Abdel-Tawwab 

et al., 2021 

Clarias batrachus 3ppm 

Decline in haemoglobin level, De-

creased R.B.C, PCV, MCV, MCH 

Rise in W.B.C count 

Tokriya and Billore, 2024 

L. rohita 66.6 mg/l 

Declined haemoglobin, RBC and 

HCT level, increased Leucocyte 

count 

Gajula et al., 2025 

Table 3. Haemato-biochemical alterations due to Imidacloprid (IMI) toxicity in different fish species 
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ty, yield declines from pests may equal the food re-

quired to feed almost a billion people. IPM is a multi-

disciplinary approach that keeps insect numbers below 

a threshold that cannot negatively impact the economy. 

Integrated pest control is a way of pest management 

through chemical and biological control operations 

(Stern et al., 1959). The idea of "Integrated Pest Man-

agement" was initially applied to agriculture in the 

1970’s to reduce the harmful consequences of pesti-

cides on non-target organisms. IPM acts as a shield to 

offer a low-risk, broad, and efficient method of securing 

both people and assets against pests (Anonymous, 

2004). Several pest-control techniques like, cultural, 

biological, genetic, physical, legal and mechanical, are 

incorporated into a single program using this methodi-

cal approach to reduce pesticide usage. Some of these 

methods are given below.  

 

Physical and mechanical control 

Physical control is modifying the surroundings to pre-

vent insect pests from thriving or growing. The two 

types of physical methods are passive (Hermetic stor-

age, packing, air doors, screening) and another one is 

active (inert dust, sieving, temperature adjustment 

(aeration treatments, heat, grain cooling, etc.) and elec-

tromagnetic methods, i.e. microwaves, radio frequen-

cies, and ionizing rays (Angon et al., 2023). Pest con-

trol techniques like temperature, moisture and humidity 

manipulation, irradiation and flooding regulate insect 

life cycles, control microbes, disinfect soil, and influ-

ence insect behaviour and physiology. Additionally, 

light, sound waves, flaming, and traditional noise meth-

ods have been historically used in agriculture for pest 

management (Adhikari, 2022). The most commonly 

used manual pest-eradication strategies are mass 

shooting, mass trapping and mating disruption 

(Yamanaka, 2007). Several other tools like fences, 

trenches for crawling insects, sticky tape on trees, 

pheromone traps, funnel traps, sucking traps, wing 

traps, water pan traps, methyl eugenol traps, pitfall 

traps, etc., can also be utilized for effective pest control 

(Dara, 2019).  

 

Biological control 

Recent IPM studies have focused on biological control 

through conservation measures and innova-

tive biopesticides that enhance the role of natural ene-

mies and pest control using botanical and microbial 

agents (Zhou et al., 2024). Biological control is the ap-

plication of natural enemies to control undesirable and 

harmful plants (weeds), insects and animals (Baker et 

al., 2020). These natural enemies can be termed bi-

opesticides such as bacteria, fungi, viruses, parasi-

toids, pathogens, predators, herbivores that feed on 

weeds, entomopathogenic nematodes and hyperpara-

sites of plant pathogens that can effectively control 

pests without harming other creatures, replacing con-

ventional pesticides (Heimpel and Mills, 2017; Sood P, 

2024). The effectiveness of natural enemies depends 

on their reproductive capacity, host specificity, environ-

mental adaptability and ability to locate pests (Bielza et 

al., 2020) efficiently. Parasitoid creatures are highly 

specific kill their prey and develop entirely on a single 

host (Salim et al., 2016) Recent studies indicated that 

parasitoids from different families like Ichneumonidae, 

Bethilidae, Pteromalidae and Braconidae have acted 

against pests of stored food (Harush et al., 2021). Ento-

mopathogenic nematodes (soil worms) like S. car-

pocapsae, H. heliothidis, H. bacteriophora, H. zealand-

ica are capable to control soil born pests like billbugs, 

armyworms, chinch bugs, fungus and scarab grubs 

(Dara, 2017; Angon et al., 2023). Further, introduction 

and encouragement of predatory vertebrates like fish, 

amphibians, reptiles and birds also effectively control 

harmful insect pests (Heimpel and Mills, 2017; Tanda, 

2024). Herbivorous fish like rohu, tilapia, grass carp, 

punti, niloticas, etc. can be used to eliminate undesira-

ble plants (aquatic weeds) like duckweeds from an 

aquatic ecosystem (Mandal and Bera, 2024). Certain 

pathogenic arthropod species effectively restrict the 

growth of exotic weeds up to 83% (Hayes et al., 2013; 

Fowler et al., 2024).  

 

Selection of pest-resistance crops 

Pest-resistant crops are genetically modified or selec-

tively bred to reduce damage caused by pests, includ-

ing fungi and viruses. Such crops are unsuitable for 

insects regarding egg laying or subsequent develop-

ment. Along with desirable economic traits, such plants 

can withstand the infection or reduce pests to a level 

that causes insignificant damage to plants during 

growth (Dara, 2019). Resistant crop varieties play an 

essential role in IPM by lowering pesticide reliance, 

reducing yield losses, and increasing the durability of 

crops through strategies such as antixenosis, antibio-

sis, and tolerance (Mani et al., 2022). Antixenosis pre-

vents pests from eating, ovipositing, or hiding them-

selves, while antibiosis inhibits their development, re-

production, or longevity by some poisonous or physical 

obstacles and tolerance enables plants to endure or 

recover from damages via increasing stress tolerant 

ability (Zhou et al., 2024). Bt cotton is a good example 

of a resistant crop, significantly reducing pesticide de-

pendence while effectively controlling lepidopteran 

pests like the cotton bollworm (Razzaq et al., 2023). 

 

Antioxidants against Imidacloprid (IMI) toxicity 

Various compounds such as n-acetylcysteine, vitamins 

(A, C, E and D), omega-3 fatty acids and coenzyme 

Q10 are well known for their significant protective ef-
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fects against toxicity induced by pesticide exposure. 

These substances possess anti-inflammatory proper-

ties, enhance detoxification process, and reduce oxida-

tive stress and cellular damage caused by pesticides 

(Sajad et al., 2024). Antioxidant compounds present in 

various plants’ extract also reduce the detrimental ef-

fects of pesticides on non-target organisms. Com-

pounds such as phenolic, curcumin, resveratrol, and 

flavonoids have been known for scavenging free radi-

cals (ROS). Quercetin is a natural plant-derived flavo-

noid compound found in many fruits and vegetables. 

Different investigations have confirmed that quercetin is 

a potential antioxidant against imidacloprid toxicity 

(Moniem et al., 2019; Miao et al., 2021). The aqueous 

extract of Moringa oleifera leaves reduced IMI-induced 

oxidative stress by lowering the synthesis of ROS in 

zebrafish (Yadav et al., 2020). Meanwhile, Naiel et al. 

(2020a) reported that vitamin C and chitosan nanoparti-

cle-enriched diets were found to have antioxidant quali-

ties that prevent O. niloticus against IMI toxicity. Hy-

phaene thebaica fruit (HTF)-enhanced diet improved 

blood-antioxidant levels in C. gariepinus, as its flavo-

noids and polyphenols scavenged free radicals, pre-

venting lipid peroxidation and ROS stress induced by 

IMI (Rahman et al., 2023). Similarly, Caffeic acid 

phenethyl ester (CAPE) is another phenolic compound 

that occurs naturally in plants and can be used as a 

therapeutic agent against pesticide-induced liver toxici-

ty (Shao et al., 2020). Antioxidant and anti-

inflammatory properties of turmeric and ginger have 

been found to diminish pesticide-induced liver and kid-

ney injuries. Supplementation of Allium sativum, Citrul-

lus colocynthis, Moringa oleifera, Thymus vulgaris, 

Menthol oil, Panax ginseng, Origanum majorana and 

Origanum vulgare also shows significant ameliorative 

effects against toxicity of various pesticides 

(Mehrandish et al., 2019; Ahmed et al., 2022; 

Mahmoud et al., 2022).  

 

Future prospective  

Research on biomagnification in aquatic food chains is 

needed to be assessed thoroughly. Further, advanced 

molecular and genetic studies can help uncover im-

idacloprid toxicity, particularly its impact on fish repro-

duction, growth, and immune system at the cellular 

level. Future research should also explore how global 

warming influences imidacloprid degradation, persis-

tence, and susceptibility towards fishes. Imposing regu-

latory laws towards the limited use of imidacloprid near 

aquatic ecosystems can help to mitigate risks for aquat-

ic life. Dietary intake of antioxidant compounds present 

in various plants extract should be promoted to mitigate 

the detrimental effects of pesticides on non-target or-

ganisms. Future policies may focus on educating farm-

ers about the environmental risks of imidacloprid and 

promoting sustainable pest control methods, such as 

integrated pest management (IPM) that can reduce 

pesticide runoff into aquatic environments. 

Conclusion 

Imidacloprid is an aquatic contaminant that frequently 

surpasses many current standards for water quality 

limits. It can negatively impact the develop-

ment, survival, activities and behaviour of several un-

targeted fish populations at various life stages. This 

review concludes that IMI treatment triggers alterations 

in developmental physiology, hematology, impaired 

body structures, behavioral impairments, biochemical 

parameters or enzymatic pathways with oxidative 

stress conditions and other genotoxic consequences in 

different treated fishes. Thus, there is a need to reduce 

IMI contamination by using organic farming to imple-

ment natural solutions and IPM strategies for prevent-

ing pest incursion. Therefore, the vast utilization of IMI 

should abstain near aquatic ecosystems and a need for 

stringent regulatory considerations for future applica-

tions. Moreover, intense research should be carried out 

to find a potential way to control IMI contamination in 

aquatic ecosystems. In addition, dietary supplementa-

tion of various antioxidants should be recommended as 

a therapeutic agent against the toxicity of pesticides, 

including imidacloprid.  
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