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INTRODUCTION 

 

Vegetation plays a vital role in Earth's ecosystems, sig-

nificantly influencing climate regulation (Alkama et al., 

2022), hydrological cycles (Makarieva et al., 2010), and 

various biological processes (Bendig et al., 2015). It is 

a key indicator of global vegetation dynamics and cli-

mate change (Li et al., 2020; Bendig et al., 2015; 

Llobera, 2007). The accurate extraction of vegetation is 

essential for effective regional planning, sustainable 

development, and ecological conservation (Anderson et 

al., 2016; Wang et al., 2024; Hmimina et al., 2013). 

Advancements in remote sensing technology, particu-

larly through satellite platforms, have revolutionized 

vegetation monitoring (Mashala et al., 2023). These 

technologies offer significant advantages over tradition-

al methods. Spectral indices derived from remote sens-

ing data have been extensively used in vegetation 

analysis, providing detailed insights into vegetation 

characteristics, crop growth, ecological quality, and 

surface conditions (Xue and Su, 2017; Clevers and 

Gitelson, 2013; Li et al., 2017; Fu et al., 2020; Delegido 

et al., 2013). These advancements have significantly 

contributed to the field of vegetation monitoring and 

analysis (Hmimina et al., 2013; Sun et al., 2021). How-

ever, this process is challenging, especially in hetero-

geneous landscapes with a mix of landforms, including 

urban areas, agricultural fields, forests, and water bod-

ies (Weng, 2012; Lu et al., 2014). Spectral similarities 

among different land cover types in these regions often 

lead to confusion in image classification. Additionally, 

the classification of vegetation and non-vegetation de-

pends on various factors, such as the spatial and spec-

tral resolution of the images (Poursanidis et al., 2015; 
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Ustuner and Sanli, 2015). 

Vegetation indices are crucial in improving image clas-

sification accuracy by providing insights into moisture 

content, nutrient levels, and crop health (Clevers and 

Gitelson, 2013; Li et al., 2017). Popular indices like the 

Normalized Difference Vegetation Index (NDVI) and the 

Enhanced Vegetation Index (EVI) are widely used for 

vegetation monitoring (Lane et al., 2014; Au, 2023). EVI 

improves upon NDVI by correcting for atmospheric con-

ditions and canopy noise, making it particularly useful in 

complex canopy. The Soil-Adjusted Vegetation Index 

(SAVI) further modifies NDVI by introducing a soil 

brightness correction factor, enhancing its accuracy in 

sparse vegetation (Ain et al., 2021).  

In this present research, the proposed index aimed to 

address the limitations of existing indices, particularly in 

diverse terrains where spectral overlaps and environ-

mental conditions present significant challenges. The 

research focused on developing a new spectral index 

for extracting vegetation using Sentinel-2B imagery. It 

was designed to provide valuable tools for ecological 

monitoring and management.  

 

MATERIALS AND METHODS 

 

Test sites 

The research identified three distinct test locations in 

Assam State (26.2006° N, 92.9376° E): Fig. 1(a) Test 

Site 1 (TS1), Fig. 1(b) Test Site 2 (TS2), and Fig. 1(c) 

Test Site 3 (TS3). Assam, spanning 78,438 sq. km, 

encompassed diverse landscapes, including densely 

built-up areas, various vegetation types (shrubs, for-

ests, croplands, grasslands), water bodies, and open 

land. These sites were selected for their varied charac-

teristics to evaluate the performance of the proposed 

indices across different landscapes. Vegetation fea-

tures included all plant cover types, while non-

vegetation features comprised built-up areas, water 

bodies, and open land. The test sites also included 

noise elements such as building shadows and cloud 

shadows to assess the robustness of the proposed 

vegetation index. 

 

Image data 

The imagery used in this research was sourced from 

Sentinel-2B, captured on June 17th, 2024, via the Eu-

ropean Space Agency’s Copernicus Open Access Hub. 

Sentinel-2B was selected for its superior spatial and 

spectral capabilities. Detailed information on its spectral 

bands is presented in Table 1. The images were 

georeferenced to WGS84 (EPSG:7758 for Assam), and 

atmospheric corrections and reflectance transfor-

mations were performed using the Semi-Automatic 

Classification Plugin (SCP) in QGIS (Tempa and Aryal, 

2022; Congedo, 2021). The raw digital numbers (DNs) 

were converted to reflectance values following the 

method described by Markham and Barker (1986). 

Six key spectral bands from Sentinel-2B were selected 

due to their relevance in vegetation studies: Bands 2 

(Blue), 3 (Green), 4 (Red), 8 (Near-Infrared), 11, and 

12 (Short-Wave Infrared). Bands 11 and 12, originally 

at a resolution of 20 meters, were resampled to 10 me-

ters using bilinear resampling, which averages the four 

nearest pixels of the original raster (Singh and Bhide, 

2016). This ensured a consistent resolution across all 

selected bands. 

The significance of the spectral bands for vegetation 

analysis is summarized as follows: 

Red (R): Assessed chlorophyll absorption and vegeta-

tion health, aiding in monitoring plant stress across var-

ied environments. 

Green (G): Indicated the green pigment in plants and 

distinguish between different vegetation types. 

Blue (B): Though less frequently used alone, it en-

Fig 1. (a) Test Site 1 (TS1) (b) Test Site 2 (TS2) (c) Test Site 3 (TS3) (d) Assam State 
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hanced contrast in vegetative cover when combined 

with other bands. 

Near-Infrared (NIR): Essential for vegetation monitor-

ing, as healthy vegetation strongly reflects in this spec-

trum. 

Short-Wave Infrared (SWIR): Detected soil and vege-

tation moisture, aiding in drought monitoring and plant 

stress assessment. 

 

Multispectral data 

The present research is grounded in multispectral sat-

ellite imagery, providing images captured across vari-

ous electromagnetic spectrum wavelengths. Unlike 

traditional single-band images, multispectral data of-

fered a detailed view of the Earth's surface by integrat-

ing information from multiple spectral bands (Ain et al., 

2021 and 2024). This data facilitated the creation of 

vegetation maps and supported monitoring changes 

over time. Precision agriculture also benefited from 

multispectral imagery by enabling the monitoring of 

crop health, optimizing irrigation, and improving yield 

prediction.  

 

Spectral indices 

Several spectral indices were employed to enhance 

vegetation monitoring and extraction from multispectral 

imagery. The NDVI, introduced by Rouse et al. (1974), 

was used to assess vegetation health by leveraging the 

reflectance differences between red and near-infrared 

bands, with values ranging from -1 to +1 (Gessesse 

Table 1. Sentinel 2B bands 

Band Name Central wavelength (nm) Spatial resolution (m) 

Band 1 Coastal aerosol 442.2 60 

Band 2 – Blue 492.1 10 

Band 3 – Green 559.0 10 

Band 4 – Red 664.9 10 

Band 5 – Vegetation red edge 703.8 20 

Band 6 – Vegetation red edge 739.1 20 

Band 7 – Vegetation red edge 779.7 20 

Band 8 – NIR 832.9 10 

Band 8A – Narrow NIR 864.0 20 

Band 9 – Water vapour 943.2 60 

Band 10 – SWIR – Cirrus 1376.9 60 

Band 11 – SWIR 1610.4 20 

Band 12 – SWIR 2185.7 20 

Table 2. Vegetation indices 

Indices Formulae Threshold Reference 

NDVI 
 

0.2-0.9 ( USGS NDVI, 2024) 

EVI 

 

0.2-0.8 ( EOS EVI, 2024) 

ARVI 

 

0.2-0.8 ( Sentinel Hub, 2024) 

MSAVI 

 

0.2-0.4 ( EOS MSAVI, 2024) 

SAVI 

 

0.2-0.4 ( USGS SAVI, 2024) 

MGRVI 

 

0.214 
(Chen et al. 2024, Bendig et al. 

2015) 

IRGBVI 
 /(

)

 

0.035-0.1 (Chen, 2024) 

TBDVI 

 

0.07 (Zhao, 2024) 
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and Melesse, 2019). However, NDVI’s sensitivity to 

atmospheric effects, soil brightness, and saturation in 

dense vegetation (Tucker, 1979) necessitated alterna-

tive indices. The Soil-Adjusted Vegetation Index 

(SAVI), proposed by Huete (1988), incorporated a soil 

correction factor (L) to minimize soil brightness effects, 

making it suitable for sparse vegetation. The Modified 

Soil-Adjusted Vegetation Index (MSAVI), developed by 

Qi et al. (1994), further refined this approach by dynam-

ically adjusting the soil correction factor based on vege-

tation density. To address atmospheric disturbances, 

the Atmospherically Resistant Vegetation Index (ARVI) 

by Kaufman and Tanre (1992) introduced corrections 

for aerosol scattering, improving vegetation monitoring 

in polluted environments. The Enhanced Vegetation 

Index (EVI), developed by Huete et al. (2002), was em-

ployed for dense biomass. It incorporated coefficients 

to correct for atmospheric conditions and canopy back-

ground noise, making it effective for dense vegetation 

monitoring (Jiang et al., 2008). 

Other indices were used for specialized applications. 

The Green Normalized Difference Vegetation Index 

(GNDVI), introduced by Gitelson et al., (1996), en-

hanced sensitivity to chlorophyll content, aiding crop 

health assessment. The Normalized Difference Water 

Index (NDWI) by Gao (1996) helped monitor vegetation 

moisture content and distinguish between vegetation 

and non-vegetation. The Renormalized Difference Veg-

etation Index (RDVI), proposed by Roujean and Breon 

(1995), combined NDVI and SAVI’s strengths to im-

prove sensitivity to vegetation density. The Normalized 

Burn Ratio (NBR), developed by Key et al.,(2006), was 

utilized for assessing fire-affected areas and post-fire 

vegetation recovery. Bendig et al., (2015) developed 

the Modified Green–Red Vegetation Index (MGRVI) for 

biomass estimation during early growth stages. Chen et 

al. (2024) introduced the Improved-Red-Green-Blue 

Vegetation Index (IRGBVI) for plateau regions, achiev-

ing high accuracy in vegetation extraction by mitigating 

interference from features like blue roofs. Zhao et al. 

(2024) proposed the Three-Band Difference Vegetation 

Index (TBDVI) for detecting vegetation destruction 

events, outperforming indices like NDVI and NBR with 

better background  interference reduction and cross-

sensor applicability. Despite advancements, Xie et al., 

(2008, 2022) and Buma et al. (2024) noted challenges 

in complex terrains, such as spectral overlaps and  

atmospheric interferences, highlighting the need for 

improved indices.  

 

Thresholding 

Thresholding methods play a crucial role in distinguish-

ing vegetation from non-vegetation in multispectral sat-

ellite imagery. While techniques like Otsu’s method 

(Xu, 2006; Zhai, 2015) enhance precision, they often 

add algorithmic complexity. Many indices, including 

those by McFeeters (1996), Rokni (2014), Rouse 

(1974), Feyisa (2014), Xu (2006), and Wilson (2002), 

adopt a zero-threshold approach for simplicity. Follow-

ing this principle, the proposed index in this research 

also utilises a zero-threshold vegetation extraction 

method to ensure computational efficiency. 

 

Reference data to verify the classification  

accuracy 

Several studies recommended using high-resolution 

imagery with human intervention to obtain reference 

data (Feyisa et al., 2014; Yan et al., 2020). Vegetation 

was visually distinguished from non-vegetation using 

high-resolution Google Earth imagery (Au, 2023 and 

Ain, 2024). Vegetation boundaries were manually digit-

ized from Google Earth imagery to generate reference 

data for test sites TS1, TS2, and TS3, ensuring align-

ment with their spatial extents. This reference data was 

utilized to evaluate the extraction accuracy of the vege-

tation indices. High-resolution images corresponding to 

the periods of the test sites were obtained and are 

shown in Fig. 2 (a) to (c). The distribution of pixels, 

total area, and number of polygons in the reference 

data are detailed in Table 3. These labeled maps ex-

clusively served as ground truth for validating the clas-

sification results. 

 

Accuracy assessment 

The accuracy of the proposed index was evaluated by 

counting correctly and incorrectly classified vegetation 

pixels. Metrics such as overall accuracy (OA) and kap-

pa coefficient (KC) were calculated using a confusion 

matrix (CM) (Khalid et al., 2021; Yan et al., 2020; 

Mondejar and Tongco, 2019), which compared predict-

ed and actual class labels. The CM included the follow-

ing components, as described in Table 4: 

True Positives (TP): Instances where vegetation pixels 

were correctly classified as vegetation. 

False Negatives (FN): Instances where vegetation 

pixels were incorrectly classified as non-vegetation. 

False Positives (FP): Instances where non-vegetation 

pixels were incorrectly classified as vegetation. 

True Negatives (TN): Instances where non-vegetation 

pixels were correctly classified as non-vegetation. 

Additional metrics used in the accuracy assessment, 

including their definitions, are presented in Equations 

(1) through (5) in Table 5.  

 

Proposed Index 

This research followed a systematic, multi-step ap-

proach to ensure precise vegetation extraction and ac-

curate analysis. The methodology comprised the follow-

ing key stages: 

Spectral Curve Generation: Development of spectral 

curves reflecting vegetation-specific characteristics. 

Spectral Curve Analysis: Analysis of spectral reflec-
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tance patterns for vegetation regions. 

Formulation of Vegetation Index: Design of a novel 

index specific for vegetation extraction. 

Optimization of the Proposed Index: Refinement of 

the formulated index to enhance its performance. 

Complexity Analysis: Assessment of the computa-

tional efficiency of the proposed index. 

 

Generating a spectral curve for vegetation regions 

Spectral curve analysis was carried out to understand 

reflectance patterns and characterize vegetation fea-

tures across diverse regions (Wang et al., 2024; Shen 

et al., 2008; Zagajewski  

1et al., 2017). Diverse vegetation types, including for-

ests, grasslands, and croplands, were considered, as 

their spectral properties are influenced by factors such 

as soil type, moisture, and species composition 

(Yaseen and Wang, (2022); Roy 1989). Urban features 

and cloud shadows, which introduce additional com-

plexity, were also analyzed. A systematic sampling 

strategy was employed, collecting over 50 sample 

points from randomly selected vegetation across vari-

ous geographic locations. For each vegetation pixel, 

spectral reflectance values across multiple bands were 

recorded. The average reflectance values for vegeta-

tion across bands followed a consistent trend:  > 

>  >  > > . 

Spectral curve analysis of vegetation regions 

The spectral curve analysis revealed critical insights 

into reflectance trends for vegetation pixels across mul-

tiple bands. Notably, the NIR band exhibited the high-

est reflectance due to strong reflection by the cellular 

structure of plant leaves (Jiang et al., 2008), making it a 

definitive indicator of vegetation. Conversely, the BLUE 

band demonstrated minimal reflectance as chlorophyll 

absorbs blue light during photosynthesis (Papoutsis et 

al., 2019). Reflectance increased in the GREEN band 

due to reduced chlorophyll absorption, producing vege-

tation's signature green hue. The RED band exhibited 

moderate reflectance, while the SWIR bands demon-

strated decreasing trends, reflecting their sensitivity to 

leaf water content (Ceccato et al., 2001). These distinct 

spectral characteristics were instrumental in accurately 

identifying and distinguishing vegetation from other 

land cover types. 

 

Formulation of a new index for extraction of  

vegetation 

The analysis of spectral curves revealed distinct varia-

tions among the values of six bands in vegetation, with 

noticeable normalized differences between them. This 

suggested that each band significantly contributed to 

the reflectance properties of vegetation pixels. Further 

observations highlighted unique trends in the NIR 

bands. Based on these insights, a new vegetation  

index was proposed, as shown in Equation (6): 

Here,  represents the reflectance values of respec-

tive bands, and λ is an empirical parameter used to 

calibrate noise levels across test sites. The difference 

consistently resulted in positive values for vegetation 

pixels and negative values for non-vegetation pixels, 

ranging between    -1 and +1. 

 

Optimization of proposed expression for  

vegetation extraction 

The proposed vegetation index was optimized through 

a recursive elimination approach, systematically ex-

cluding one or more spectral bands and evaluating per-

formance. The blue band was found to significantly 

impact accuracy, and its exclusion led to notable per-

formance drops. Similarly, the green band, though less 

impactful than blue, still influenced accuracy. The 

SWIR1 and SWIR2 bands were particularly essential in 

distinguishing vegetation in challenging conditions. Ex-

cluding multiple bands, such as blue and green or 

SWIR2 and blue, further degraded accuracy, empha-

sizing the interdependence of spectral bands. The NIR 

bands consistently played a pivotal role in maintaining 

accuracy across all scenarios. Detailed results of these 

Fig 2. Reference images of  (a)TS1  (b)TS2   (c)TS3 
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evaluations for test sites TS1, TS2, and TS3 are pre-

sented in Table 6. 

 

Complexity analysis 

The complexity of the proposed vegetation index was 

analyzed in terms of time, space, and computational 

cost. The time complexity was determined to be O

(M×N), where M represents the number of spectral 

bands and N the number of pixels, resulting in a linear 

computational time. Similarly, the space complexity 

was also O(M×N), accounting for memory require-

ments. The inclusion of the empirical parameter λ al-

lowed fine-tuning of algorithm performance, influencing 

computational costs. This linear relationship ensured 

that the index remained efficient for varied datasets. 

 

RESULTS AND DISCUSSION 

 

Numerous vegetation indices have been developed to 

aid in satellite image classification, focusing on under-

standing vegetation health and monitoring related fea-

tures. This section evaluates the effectiveness of the 

proposed vegetation index ANVI. The evaluation in-

cludes a comparative analysis against established veg-

etation indices from prior studies (Rouse et al., 1974; 

Kaufman and Tanre (1992); Qi et al., 1994; Huete, 

(1988); Huete et al., 2002, Bendig et al., 2015; Chen et 

al., 2024; Zhao et al., 2024). Binary classification maps 

for vegetation cover extraction generated for each test 

site (TS1-TS3) using all indices are listed in Table 1, 

depicted in Figures 4-6 respectively. A standardized set 

of metrics suitable for all test regions was utilized to 

quantitatively assess index performance. A detailed 

comparison of each index’s classification performance 

with ANVI is presented in Tables 7 to 9. The analysis of 

vegetation indices from the data in TS1, TS2, and TS3 

highlights the varying performances of these indices 

across different test sites, reflecting their distinct 

strengths and weaknesses in vegetation classification. 

The white rectangles in the indices images indicate 

pixels where some vegetation pixels are misclassified 

as non-vegetation pixels.  

Additionally, it was observed that some vegetation cov-

ered in shadow are misclassified as non-vegetation. 

Furthermore, some non-vegetation pixels were classi-

fied as vegetation pixels, as indicated by the red circles 

in the indices images. NDVI consistently demonstrated 

the lowest performance across all test sites, with over-

all accuracy of 0.440 in TS1, 0.423 in TS2, and 0.430 in 

TS3. Despite marginal improvements in TS1, its Kappa 

coefficients remained below 0.12, indicating poor relia-

bility. High Type I Errors (e.g., 0.789 in TS1) and Type 

II Errors (e.g., 0.128 in TS2) further underscore its ina-

bility to handle environmental variability effectively. 

Table 3. Number of pixels, polygons and area 

Items TS1 TS2 TS3 

Vegetation Pixels 94,421 264,701 98,148 

Non-Vegetation Pixels 214,459 435,231 158,088 

Polygon cover with vegetation pixels 1,400 4,297 1,761 

Total Area (m2) 3,088,800 6,999,320 2,562,360 

Table 4. Confusion matrix for binary classification 

Items Predicted Vegetation Predicted Non-Vegetation 

Actual Vegetation TP FN 

Actual Non- Vegetation FP TN 

Table 5. Metrics used in the evaluation of vegetation indices 

Evaluation Metrics Description Expression 

Precision 
The ratio of predictions as the positive class was 
positive. 
   

Recall 
Measures what fraction of all positive samples 
were correctly predicted as positive by the classifi-
er. 

 

F1-score F1-score Harmonic mean of precision and recall. 

 

Type I Error 
Type I Error Instances are falsely classified as 
positive when they are negative. 

 

Type II Error 
Type II Error Instances are falsely classified as 
negative when they are positive 
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NDVI’s reliance on only red and near-infrared bands 

makes it highly sensitive to atmospheric effects and soil 

brightness. ARVI addressed some limitations of NDVI 

by incorporating atmospheric resistance, achieving 

higher accuracy in TS1 (0.659) and TS3 (0.742). How-

ever, its performance in TS2 (0.589) highlighted sensi-

tivity to environmental variability. Kappa coefficients 

ranged from 0.235 to 0.519, reflecting moderate relia-

bility. While ARVI reduced Type I Errors (e.g., 0.394 in 

TS3), its performance was still limited by classification 

inaccuracies under complex conditions. MSAVI’s 

strength lies in its reduced sensitivity to soil brightness, 

achieving an impressive 0.843 accuracy and 0.570 

Kappa in TS1. However, its performance declined in 

TS3 (0.730 accuracy, 0.400 Kappa), with high Type II 

Errors (e.g., 0.639). Despite inconsistencies, MSAVI 

outperformed simpler indices like NDVI and ARVI, 

demonstrating its suitability for environments with sig-

 Table 6. Impact of band exclusion on vegetation extraction accuracy and kappa coefficient 

Band Excluded 

TS1 TS2 TS3 

Overall  
Accuracy 

Kappa  
Coefficient 

Overall  
Accuracy 

Kappa  
Coefficient 

Overall  
Accuracy 

Kappa  
Coefficient 

Blue 0.4153 0.1028 0.4600 0.1028 0.4243 0.0520 

Green 0.4054 0.0930 0.4344 0.0699 0.4136 0.0383 

Red 0.7045 0.0457 0.6536 0.1024 0.6196 0.0086 

SWIR1 0.7045 0.0457 0.6536 0.1024 0.6196 0.0086 

SWIR2 0.4888 0.1796 0.5397 0.2098 0.3873 0.0053 

Blue and Green 0.3057 0.0316 0.3783 0.0001 0.3832 0.0002 

SWIR1 and Red 0.7045 0.0457 0.6536 0.1024 0.6196 0.0086 

SWIR1 and SWIR2 0.8354 0.5495 0.9019 0.7909 0.7060 0.4189 

SWIR2 and Blue 0.3486 0.0387 0.3913 0.0161 0.3835 0.0005 

SWIR2 and Green 0.3452 0.0356 0.3897 0.0141 0.3833 0.0003 

SWIR2 and Red 0.8032 0.4358 0.7402 0.3619 0.7532 0.4060 

Fig 4. Comparison of various vegetation indices with ANVI for TS1 (a) NDVI (b) ARVI  (c) MSAVI (d) IRGBVI  (e) EVI  (f) 

MGRVI (g) SAVI (h) TBDVI (i) ANVI (j) RGB Image 
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Fig. 5. Comparison of various vegetation indices with ANVI for TS2 (a) NDVI (b) ARVI  (c) MSAVI (d) IRGBVI  (e) 

EVI  (f) MGRVI (g) SAVI  (h) TBDVI (i) ANVI (j) RGB Image 

Fig 6. Comparison of various vegetation indices with ANVI for TS3 (a) NDVI (b) MSAVI  (c) ARVI (d) IRGBVI  (e) SAVI  

(f) MGRVI (g) EVI  (h) TBDVI (i) ANVI (j) RGB Image 
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nificant soil interference. IRGBVI leveraged multiple 

spectral bands to enhance classification accuracy. It 

achieved 0.859 accuracy and 0.676 Kappa in TS1, and 

0.833 accuracy with 0.611 Kappa in TS3. Type I Errors 

remained low across all sites (e.g., 0.0002 in TS1), un-

derscoring its ability to distinguish vegetation effective-

ly. However, moderate Type II Errors in TS3 (0.441) 

highlighted room for improvement under challenging 

conditions. SAVI demonstrated robust performance 

across all test sites, with accuracies of 0.895, 0.841, 

and 0.858 in TS1, TS2, and TS3, respectively. Its Kap-

pa coefficients ranged from 0.652 to 0.741, reflecting 

high reliability. By adjusting for soil brightness, SAVI 

minimized classification errors, achieving a balance 

between sensitivity and specificity. EVI’s ability to cor-

rect for atmospheric and soil background effects result-

ed in consistently high performance. TS1 recorded an 

accuracy of 0.890 and a Kappa coefficient of 0.762. 

Although performance dipped slightly in TS2 (0.777 

accuracy, 0.560 Kappa), EVI recovered in TS3 (0.860 

accuracy, 0.704 Kappa). Its robust metrics highlight its 

reliability across diverse conditions. MGRVI, leveraging 

improved greenness representation, showed promise 

by achieving moderate accuracy across TS1 (0.820), 

TS2 (0.802), and TS3 (0.812). However, its sensitivity 

to mixed pixel effects and subtle vegetation variations 

prevented it from achieving the reliability seen with indi-

ces like ANVI. TBDVI excelled in TS1, achieving the 

highest accuracy (0.934) and Kappa coefficient (0.854). 

Strong performance was also observed in TS3 (0.879 

accuracy, 0.680 Kappa). Precision and Recall metrics 

consistently exceeded 0.99 in TS1, minimizing Type I 

Errors. However, sensitivity to environmental variability 

in TS2 (0.890 accuracy, 0.762 Kappa) indicated areas 

for refinement.  

The proposed ANVI consistently outperformed all other 

indices, achieving the highest overall accuracy and 

Kappa coefficients across all test sites. In TS1, ANVI 

recorded 0.969 accuracy and 0.928 Kappa, with similar 

results in TS2 (0.971 accuracy, 0.938 Kappa) and TS3 

(0.963 accuracy, 0.932 Kappa). Precision (0.999) and 

Recall (0.998) metrics highlight its unmatched classifi-

cation performance. By minimizing Type I and II Errors 

(e.g., 0.045 and 0.0007 in TS1), ANVI demonstrated 

exceptional reliability, adaptability, and robustness un-

der diverse environmental conditions.Notably, the pa-

rameter λ was empirically set to 2, as it provided the 

most stable and optimal classification results across all 

Table 7. Quantitative analysis of various vegetation indices with ANVI for TS1 

Vegetation 
Indices 

Overall 
Accuracy 

Kappa 
Coeff. 

Type I 
Error 

Type II 
Error 

Precision Recall F1-Score 

 Veg 
Non 
Veg 

 Veg 
Non 
Veg 

 Veg 
Non 
Veg 

NDVI 0.4409 0.1169 0.7893 0.0364 0.3496 0.9294 0.9636 0.2106 0.5130 0.3435 

ARVI 0.6593 0.3726 0.4649 0.0585 0.4713 0.9540 0.9414 0.5350 0.6281 0.6856 

MSAVI 0.8429 0.5695 0.0027 0.5079 0.9878 0.8168 0.4921 0.9973 0.6569 0.8981 

IRGBVI 0.8591 0.6762 0.0002 0.3725 0.9952 0.8158 0.6274 0.9921 0.7710 0.8982 

EVI 0.8896 0.7618 0.0662 0.1823 0.7821 0.9473 0.8875 0.8911 0.8315 0.9184 

MGRVI 0.8901 0.7504 0.1089 0.1124 0.7821 0.9473 0.8875 0.8911 0.8315 0.9184 

SAVI 0.8945 0.7411 0.0447 0.2436 0.8815 0.8990 0.7563 0.9552 0.8142 0.9263 

TBDVI 0.9341 0.8536 0.0949  0.0032 0.8226 0.9998 0.9998 0.9051 0.9027 0.9501 

ANVI 0.9686 0.9281 0.0452 0.0007 0.9068 0.9994 0.9992 0.9547 0.9511 0.9768 

Table 8. Quantitative analysis of various vegetation indices with ANVI for TS2 

Vegetation 
Indices 

Overall 
Accuracy 

Kappa 
Coeff. 

Type I 
Error 

Type II 
Error 

Precision Recall F1-Score 

Veg 
Non 
Veg 

Veg 
Non 
Veg 

Veg 
Non 
Veg 

NDVI 0.4231 0.0174 0.8494 0.1289 0.3496 0.9293 0.9636 0.2106 0.5130 0.3435 

ARVI 0.5888 0.2348 0.5521 0.1796 0.4713 0.9540 0.9415 0.5351 0.6282 0.6856 

MSAVI 0.7575 0.4916 0.2172 0.2841 0.9879 0.8169 0.4921 0.9973 0.6570 0.8981 

IRGBVI 0.7590 0.5128 0.0025 0.6370 0.7617 0.9515 0.8461 0.8695 0.5206 0.6513 

EVI 0.7765 0.5596 0.3028 0.0933 0.7821 0.9474 0.8876 0.8911 0.8315 0.9189 

MGRVI 0.8108 0.6083 0.1935 0.1818 0.7199 0.8794 0.8181 0.8064 0.7659 0.8413 

SAVI 0.8413 0.6518 0.0795 0.2889 0.8816 0.8991 0.7564 0.9553 0.8142 0.9263 

TBDVI 0.8896 0.7618 0.0662 0.1829 0.8824 0.8935 0.8170 0.9337 0.8484 0.9132 

ANVI 0.9706 0.9384 0.0473 0.0026 0.9068 0.9994 0.9992 0.9548 0.9511 0.9769 
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test sites. Its sophisticated integration of spectral bands 

addresses atmospheric and soil brightness challenges 

effectively. The comparative analysis highlights ANVI’s 

dominance over traditional indices, consistently deliver-

ing the highest accuracy, Kappa coefficients, and F1-

Scores across all test sites. ANVI stands out as the 

most reliable and adaptable vegetation index for land 

cover classification, outperforming several traditional 

indices. While other indices showed moderate to strong 

performance under specific conditions, their limitations 

in handling atmospheric effects, soil brightness, or envi-

ronmental variability were evident. ANVI’s integration of 

diverse spectral bands ensures unmatched accuracy, 

robustness, and adaptability, making it a superior 

choice for remote sensing applications. 

 

Conclusion 

 

The proposed vegetation index introduced in this re-

search marked a significant advancement in vegetation 

mapping, addressing key limitations observed in exist-

ing methods, especially in complex landscapes with 

spectral overlaps and varying environmental conditions. 

By effectively utilizing the spectral richness of multi-

spectral bands, the new index demonstrated improved 

accuracy and reliability in vegetation extraction, particu-

larly in challenging areas where traditional indices show 

reduced performance. The index was designed for ro-

bustness across diverse terrains, ensuring consistent 

vegetation mapping, even in regions with intricate spa-

tial patterns. Its application extends to precision agricul-

ture, offering refined insights into vegetation health, 

moisture levels, and nutrient status, thereby supporting 

better-informed agricultural practices. Overall, the pro-

posed index offers a valuable contribution to remote 

sensing and vegetation monitoring, facilitating more 

precise environmental management and aiding in sus-

tainable development efforts. 
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