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INTRODUCTION 

 

Climate change and increasingly severe global warm-

ing have caused climate uncertainty globally, including 

in various regions of Indonesia. This results in fluctua-

tions in rainfall patterns, making it difficult to predict 

rainfall (Oppenheimer et al.., 2016). This uncertainty in 

rainfall patterns has far-reaching implications for vari-

ous sectors in Indonesia. However, using data mining 

techniques and utilizing past rainfall data as input, we 

can predict future rainfall more accurately. Data mining 

can process large amounts of data quickly and accu-

rately, allowing it to predict future weather changes in 

Indonesia (Chauhan and Thakur, 2014). Rainfall is a 

very important environmental phenomenon in Indone-

sia, especially in the agricultural sector for crop produc-

tion. The amount of rainfall significantly influences de-

termining crop yields (Salman, 2016). 

Previous research by Pratama et al.. (2021) predicted 

rainfall, tides, and topography based on the monthly 

Abstract 

Climate change and global warming significantly impact rainfall patterns in various regions. This can lead to more frequent and 

intense flooding and an increased risk of landslides. As a result, it causes unstable rain variability patterns in various regions, 

including Kapuas Hulu, West Kalimantan Province, Indonesia. Almost every year, the area experiences floods and landslides. 

The area, directly adjacent to the Indonesia-Malaysia region, can potentially disrupt community activities, including military oper-

ations guarding the border, which require a lot of manpower. This study aimed to minimize future disasters as it is vital to antici-

pate rainfall patterns based on previous data from databases. The Backpropagation Neural Network (BPNN) approach is one of 

the best at predicting long-term rainfall. Rainfall data from NASA was utilized from January 2003 through December 2020, total-

ling 216 data sets. The input or training data ranges from January 2003 to December 2010, whereas the training goal data is 

from January 2011 to December 2015. The validation data was also determined from January 2016 to December 2020. With a 

learning rate of 0.3 and an Epoch of 9,999, the best predictive architecture model was 8-6-9-6-5. The prediction accuracy was 

pretty excellent, with a mean square error (MSE) of 0.012157 and a mean absolute percentage error (MAPE) of 24.026. The 

highest rainfall was recorded in December 2019 at 606.672 mm/month. The prediction results are expected to serve as a refer-

ence for mitigating disasters such as floods and landslides to facilitate security operations in border areas. 

 

Keywords:  Backpropagation Neural Network (BPNN), Disaster, Flood, Prediction, Rainfall 

How to Cite 

Rizaldi, B. A. et al. (2025). Deep learning of backpropagation neural network algorithm for long-term predicting rainfall in the 

Kapuas Hulu, West Kalimantan province of Indonesia. Journal of Applied and Natural  Science,  17(1), 389 - 397. https://

doi.org/10.31018/jans.v17i1.6183     

mailto:bobbyadhityor@gmail.com
https://doi.org/10.31018/jans.v17i1.6183
https://doi.org/10.31018/jans.v17i1.6183
https://doi.org/10.31018/jans.v17i1.6183
https://doi.org/10.31018/jans.v17i1.6183


 

390 

Rizaldi, B. A. et al. / J. Appl. & Nat. Sci. 17(1), 389 - 397 (2025) 

period. However, this period has certain weaknesses. 

For instance, several Indonesian Agency for Meteoro-

logical, Climatological and Geophysics monitoring sta-

tions in certain areas may lack records or have missing 

data due to malfunctioning recording devices. Kim et 

al.. (2019) mention that using a time period makes cal-

culating missing data at specific times impossible. Rain-

fall is the amount of rainwater that falls on the Earth's 

surface during a specific period in a particular area. 

Rainfall can be measured over daily, monthly, or yearly 

periods. Several elements determine the amount of 

rainfall in a given place, including air humidity, air pres-

sure, temperature, and wind speed. (Putra et al.., 

2022). Although the exact amount of future rainfall can-

not be determined with certainty based on historical 

data, it can be predicted using past rainfall data. How-

ever, detailed rainfall forecasts for each region are lack-

ing (Todini, 2007). Accurate knowledge of rainfall is 

crucial for various sectors, including water supply man-

agement, reservoir maintenance, and flood control in a 

specific area (Hanak and Lund, 2012). 

The rainfall prediction is important because it affects 

river discharge and can help mitigate the impact of rain-

fall-related disasters such as landslides. Heavy rainfall 

in mountainous regions can trigger disasters that im-

pact public infrastructure, waste disposal networks, and 

other human activities. Therefore, accurate rainfall pre-

diction is crucial for proper planning and risk manage-

ment (Shi et al.., 2015). Backpropagation is a popular 

supervised learning method with advantages in terms of 

its learning capabilities. Historical data is utilized to 

identify short-term, medium-term, or long-term trends 

when forecasting future events. Backpropagation is 

suitable for making future predictions due to its straight-

forward calculation process and ability to handle com-

plex data (Shirzadi et al.., 2021).  

Artificial Neural Networks (ANN) are processing sys-

tems designed to mimic the workings of the human 

brain, enabling them to recognize patterns based on 

studied historical data and make decisions based on 

previously unseen data (Kukreja et al.., 2016). 

One method that can be used to measure the magni-

tude of prediction error is MAPE. Utilizing the Mean 

Absolute Percentage Error (MAPE) helps obtain predic-

tive results by minimizing errors and reducing uncer-

tainty in the predicted data. MAPE represents the abso-

lute error rate in predictions compared to actual values 

(Al Mamun et al.., 2020). BPNN has been successfully 

applied in various sectors, including predicting data 

encryption- decryption patterns (Shihab, 2006), cyber-

security decryption functions (Bapiyev et al.., 2017), 

solving intrusion detection problems (Afolabi and 

Aburas, 2021), predicting wind speed for wind power 

plants (Qu et al.., 2019), light intensity for solar power 

plants (Zhong et al.., 2018), and rainfall (Guha et al.., 

2022). Based on the problem description, a study on 

Rainfall Long-term Prediction in Kapuas Hulu, West 

Kalimantan, is proposed using the backpropagation 

neural network algorithm based on rainfall determi-

nants. Therefore, this study focused on predicting rain-

fall in Kapuas Hulu in Indonesia, an area with extremely 

high rainfall intensity that is prone to flooding and land-

slides. 

 

MATERIALS AND METHODS 

 

The study utilized data related to weather conditions in 

the sub-district, such as temperature, humidity, altitude, 

area, number of mountains, green area, distance from 

the sea, water availability, and rainfall from 2003 to 

2020. The data was divided into two categories: learn-

ing data and validation data. By collecting and analyz-

ing this data, it is expected that the proposed system 

can provide early rainfall predictions to assist in ad-

dressing future disaster-related issues. 

 

Data Source  

The rainfall intensity data source used was from 2003-

2020, with the distribution of training data from 2003-

2010, followed by learning data from 2011-2015. The 

validation data was taken from 2016 to 2020, with data 

available for each month from January to December. 

The overall rainfall intensity data was obtained from 

"https://power.larc.nasa.gov/data-access-viewer/". The 

selected location was at point 0 in Kapuas Hulu, West 

Kalimantan, with the geographical coordinates Latitude 

0.95 and Longitude 112.8833. The location was chosen 

in the city center to map rainfall patterns as a future 

mitigation effort. 

 

Backpropagation Neural Network (BPNN) 

Paul Werbos initially introduced the backpropagation 

neural network (BPNN) method. Werbos (1974) pro-

posed the "backpropagation of error" algorithm in his 

dissertation titled "Beyond Regression: New Tools for 

Prediction and Analysis in the Behavioral Sciences". 

His contribution was recognized as a significant step in 

developing the backpropagation algorithm. Following 

that, David Rumelhart, Geoffrey Hinton, and Ronald 

Williams reconstructed the backpropagation method in 

a significant article titled "Learning representations by 

back-propagating errors" in 1986. This paper helped 

popularize the backpropagation algorithm and made it 

widely known and studied in the computer science and 

artificial intelligence communities. 

The BPNN algorithm method fundamentally utilizes a 

multilayer network. This means that the architecture of 

the Backpropagation Neural Network typically consists 

of three types of layers: the input layer, the hidden lay-

er, and the output layer. Each layer consists of several 

interconnected neurons. The input layer initially func-

tions to transmit input signals X to the hidden layer, so 
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no computation process has taken place yet. In the 

hidden layer, each neuron receives input from neurons 

in the previous layer and provides output to neurons in 

the next layer. The hidden layer plays a role in extract-

ing and learning patterns in the input data. The output 

layer performs computations on the weights and biases 

and calculates the output values based on a specific 

activation function. Typically, a binary sigmoid activa-

tion function ranging from 0 to 1 is used (Karsoliya, 

2012). The flowchart of the BPNN is mentioned in  

Fig. 1. 

The following were the first steps in training the BPNN 

approach: 

Began by assigning tiny random values to the weights. 

If the MSE and MAPE halting requirements are not ful-

filled, go to steps 3-8. 

 

Step 1: Feed forward propagation 

Each input unit (xi, i=1,.,n) receives input signals xi and 

forwards them to the hidden 

units. Each input unit (x ,  =1, 2, 3,  ) receives the sig-

nal    and passes it to 

all units in the layers above it (hidden layers). 

According to Fei J et al.. (2016), each hidden unit (  , 

 =1,....., ) sums the weighted input signals using equa-

tion (1). 

    

(1)

 

When Z is the hidden neuron, V0j is the bias weight 

from the input neuron to the j, and xi is the input neuron 

to the i. Vij is the weight of the input neuron to the hid-

den neuron. 

Equation is used to apply and compute the activation 

function (2). 

                                         
(2)

 

When Zj is a hidden layer unit to j, Zin_j is the output of 

Zj unit. 

The sigmoid function, for example, is employed as the 

activation function in equation (3). 

                 

(3)

 

This signal is sent to all units in the output layer via the 

sigmoid activation function. 

Using equation, each output unit (yk, k = 1,. ,m) 

adds the weighted input signals (4). 

                

(4)

 

With Y_ink being the output for the unit yk; w_0k being 

the bias weight for the hidden neuron to k; zj being the 

unit j in the hidden layer; and wjk being the weight neu-

ron hidden to output neuron. 

Using the activation function derived by equation (5). 

   =  (    )                                                        (5) 

With.      is outpot for Yk. Unit. 

 

Step 2: Backpropagation (backward) 

The input training patterns are received by each output 

unit (yk, k=1,. ,m). Using the 

equation, calculate the inaccuracy for each layer (6). 

                                            

When    is the weight correction factor    ;   is target; 

   is output neuron to k;      is output for    unit. 

Using equation, compute the weight and bias adjust-

ments (7). 

                                                         

 

When Δ    = is the difference between     ( ) with    

( +1); Δ 0  is the bias weight for the hidden neuron to 

Fig. 1. Long-term Backpropagation neural network flowchart 
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the  ;   is learning rate;    is the weight correction 

factor. 

   ; x is input. 

7. In each hidden unit (  ,  =1,…., ) It sums up the del-

ta of its inputs (from units in the 

higher layers) using equation (8). 

    

(8)

 

Where    is the weight correction factor for wjk, and wjk 

is the weight neuron hidden to the output neuron. Using 

equation, calculate the inaccuracy for each layer (9). 

                 
(9)

 

When    is the weight correction factor to    ;   is cor-

rection factor;   is input. 

Using the equation, compute the weight and bias ad-

justments (10). 

              
(10)

 

With Δ    is the weight of the hidden neuron's input 

neuron.;   = learning rate;    = the weight correlation 

coefficient    ;    = an input neuron to  . 

 

Step 3: Update the weights and biases. 

In each output units (  ,  =1,....., ) Update the 

weights and biases (  = 0,1,.. ) are calculated using 

equation (11).                              

            

(11)

 

Where     is the weight from the hidden neuron to the 

output neuron.; Δ    is the weight difference between 

the hidden neuron and the output neuron. 

In each hidden units (  ,   = 1,.., ) updating the weights 

and biases. (  = 0,1,.. ) calculate  with (12) equations. 

            
(12)

 

Where vij is the weight transferred from the input neu-

ron to the hidden neuron; Δ    is the weight difference 

between the input neuron and the hidden neuron. 

Maximum input epochs to automatically stop. 

 

Accuracy of Prediction 

Validation to measure prediction accuracy uses the 

Mean Squared Error (MSE) method to evaluate fore-

casting errors for each period and divide it by the num-

ber of forecast periods used (Zhang et al.., 2015). The 

formula for calculating the MSE accuracy measurement 

can be seen in equation (13). 

             

(13)

 

Where    is actual value; i is predict value; n 

amount of time periods or goals. 

The value of Mean Absolute Percentage Error (MAPE) 

is used to select the optimal design optimization indica-

tor (VanDeventer et al.., 2019). MAPE is a measure of 

prediction variability for statistical forecasting systems, 

commonly used to indicate the accuracy ratio deter-

mined by equation. (14). 

              

(14)

 

Data sample 

The rainfall data from January 2003 to December 2020, 

totaling 216 sets of data, was obtained from NASA, 

making this research based on long-term data learning. 

It should be noted that the data from January 2003 to 

December 2010 is positioned as input data, and the 

Training Target Data is from January 2011 to Decem-

ber 2015. The validation data is determined from Janu-

ary 2016 to December 2020. Each data is normalized 

within the range of 0.1-0.9 using equation (15), and the 

normalized data results are shown in Table 1 and Fig. 

2. 

                                 

(15)

 

It is known that X' represents normalized data, a repre-

sents the highest value of factual data, b represents the 

minimum value of factual data, and X represents the 

factual data. Furthermore, the BPNN algorithm is used 

in the prediction phase. To retrieve the original form of 

the forecasts, the anticipated outcomes are denormal-

ized. Equation shows the formula for computing denor-

malized data (16). 

    

(16)

 

 

RESULTS AND DISCUSSION 

 

The prediction of rainfall data from 2016-2020 was con-

ducted using the BPNN algorithm implemented in Py-

thon. The process involved optimization of the learning 

rate and epoch parameters to obtain the best results. 

These parameters produced the best values when the 

resulting MSE was significantly small, less than 10% 

(Chen G et al.., 2014). As a result, an optimization pro-

cedure was carried out by adjusting the learning rate 

from 0.1 to 0.9 and the number of epochs from 10,000 

to 200,000 with a 10,000-step size. The graphical rela-

tionship between the optimization of epochs and the 

learning rate for the MSE values is shown in Fig. 3. 

Fig. 3 illustrates that the ideal learning rate of 0.3 and 

epoch value of 9999 results in the lowest MSE value, 

with an MSE value of only 0.000716307355991353 (< 
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0.10). This is consistent with the parameters reported 

by Wica et al.. (2019) with an MSE value of 0.0218 

(also below 10%) using a learning rate of 0.7 and a 

10.000 epoch. It should be emphasized, however, that 

the epoch and learning rate/alpha values are not uni-

versally relevant to all datasets      but are only appro-

priate for certain datasets or locations with unique data 

patterns. As a result, before making predictions, Tari-

gan et al.. (2017) recommend optimizing the learning 

rate, hidden layer design, and epoch, as well as the 

learning rate, momentum rate, and number of hidden 

neurons simultaneously. This study also makes use of 

a parameter optimization system, which includes the 

learning rate, architecture, and a range of epochs in the 

hundreds of thousands      and is backed up by an 18-

year (long-term) database. Once all the optimization 

parameters we     re obtained, the prediction was per-

formed using the Backpropagation Neural Network 

method, resulting in the values shown in Tables 2 and 3.  

Reviewing Tables 3 and 4, the results of the BPNN 

algorithm learning-prediction for each parameter can be 

observed, including Layer, Epoch, Learning rate, 

MAPE, and MSE during the learning and validation 

processes. The optimized architecture model in the 

learning phase, with a layer configuration of 8-8-10-5, a 

learning rate of 0.3, and an epoch of 9999, achieved 

excellent accuracy with an MSE value of 0.000716 and 

MAPE value of 5.43747. These parameters could also 

predict the validation data from 2016 to 2020 with rea-

sonably good accuracy, resulting in a Validate MSE of 

0.06555 and Validate MAPE of 45.63599. These re-

sults are quite good but slightly deviate from the ideal 

MAPE value as they are above 15%. This deviation 

was due to significant changes in the training-learning 

database pattern (2003-2015) compared to the valida-

tion period (2016-2020). According to Nayak (2023), 

this phenomenon is intimately tied to the more unpre-

dictable climate circumstances induced by climate 

change and global warming. It is crucial to note that the 

accuracy of most composite models tends to decline as 

the projection period lengthens. As a result, the learn-

ing process satisfies the requirements for usage in the 

prediction process. However, the prediction phase re-

quires additional modification, as it is the most crucial 

Month 
Year 

2011 2012 2013 2014 2015 

Jan 0.540580985 0.343474915 0.355072623 0.320290492 0.876815577 

Feb 0.349279266 0.586960823 0.708698281 0.175357619 0.372463688 

Mar 0.540580985 0.737687054 0.436234592 0.436234592 0.569569758 

Apr 0.384061396 0.453625658 0.575363115 0.302899427 0.633340662 

May 0.395659104 0.302899427 0.563776401 0.494201146 0.360865981 

June 0.494201146 0.256519588 0.204346392 0.291301719 0.41305017 

July 0.320290492 0.453625658 0.384061396 0.146379839 0.221737458 

August 0.198553035 0.505798854 0.418843527 0.604351889 0.262323939 

Sept 0.308692784 0.291301719 0.505798854 0.436234592 0.227541808 

Oct 0.598558531 0.563776401 0.29710607 0.430441235 0.389854754 

Nov 0.500005497 0.87102222 0.44202795 0.865217869 0.760871477 

Dec 0.9 0.639134019 0.778262542 0.482614431 0.4478323 

Table 1. Index rainfall of 2011-2015 period actual (Learning) 

Month 
Year 

2016 2017 2018 2019 2020 

Jan 0.55797205 0.500005497 0.488407789 0.540580985 0.528983277 

Feb 0.621742954 0.598558531 0.482614431 0.586960823 0.471016723 

Mar 0.540580985 0.401452462 0.650731727 0.32608385 0.575363115 

Apr 0.563776401 0.4478323 0.604351889 0.511592211 0.598558531 

May 0.615949597 0.476810081 0.679709508 0.279715004 0.436234592 

June 0.563776401 0.430441235 0.511592211 0.430441235 0.482614431 

July 0.32608385 0.378257046 0.279715004 0.244932873 0.656525085 

August 0.256519588 0.720295989 0.273910654 0.343474915 0.41305017 

Sept 0.569569758 0.685513858 0.239128523 0.192759677 0.523189919 

Oct 0,476810081 0,482614431 0,749273769 0,453625658 0,41305017 

Nov 0,471016723 0,621742954 0,592754181 0,29710607 0,546374342 

Dec 0.436234592 0.528983277 0.563776401 0.760871477 0.360865981 

Table 2. Index actual rainfall from 2016 to 2020 (Validate) 
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stage in forecasting rainfall patterns that may occur in 

Kapuas Hulu, West Kalimantan. 

Specifically, in the BPNN information, the prediction 

process resulted in optimizing the architecture model 

with a configuration of 8-6-9-6-5, learning rate of 0.3, 

and epoch of 9999, achieving fairly good accuracy with 

an MSE value of 0.012157 and MAPE value of 

24.02655. These figures are fairly good compared to 

the learning architecture model's correctness. However, 

they were not absolute for the validation data situation. 

Validated MSE and MAPE accuracy values for the Pre-

diction Architecture Model were 0.03365 and 32.0862, 

respectively. When compared, the prediction architec-

ture model (8-6-9-6-5) was much more predictable than 

the learning model (8-8-10-5). Fig. 4 depicts a compari-

son graph between the best architecture in the learning 

phase and the best architecture in the prediction pro-

cess versus the actual/target values. 

Spotlight on Fig. 4, the blue line represents the target 

data, the green line represents the learn model, and the 

yellow line represents the predict model. In general, 

both models have shown the pattern of rainfall predic-

tion and learning that tends to follow the target data or 

validate data that occurred in Kapuas Hulu. However, 

there are shifting or peak shifts in certain time phases, 

such as August 2018-May 2019 and August 2016-

Fig. 2. (a) Actual Rainfall Graph from 2011 to 2015 (Learn) (b) Rainfall graph for the period 2016-2020 (Validate) 

a b 

Fig. 3. MSE graph depicting the link between epoch value and learning rate 

Result of Variable 
Value 

Hidden Layer Neuron Hidden Layer Architectures 

Layer 3 18 8-8-10-5 

Epoch and Learning Rate 9999 and 0.3 

MAPE (%) 5.43747286185864 

MSE (%) 0.000716307355991353 

Validate MAPE (%) 45.6359956121716 

Validate MSE (%) 0.0655589932455263 

Table 3. Best parameter of Learning rainfall with  Backpropagation Neural Network (BPNN) 
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January 2017. Significant changes in the Training and 

Learning data with a propensity for the same or non-

complex repeating patterns, as shown in Fig. 2(a) 

Training Data and 2(b) Validation Data, significantly 

impacted this. This has an impact on the results of the 

model in Fig. 4. The BPNN algorithm only remembers 

regular pattern shapes learned from the Training and 

Learning data. However, the results of these data 

changes are still capable enough to predict future cli-

mate pattern conditions, although not with 100% accu-

racy. This aligns with the report by Zhang et al.. (2023) 

that chaotic weather conditions cause weather se-

quences and patterns to always show firm peaks and 

fluctuations. These characteristics greatly affect the 

prediction accuracy of weather variables such as wind 

speed, solar intensity, and rainfall. Therefore, changes 

and differences in peaks/intensity are to be expected 

due to increasingly complex weather conditions result-

ing from various issues, including global warming and 

climate change. 

The largest deviation occured from August 2016 to July 

2017. The significant deviations in the learning and 

prediction models might be due to the learning process 

of the data from 2011 to 2015, as shown in Fig. 2(a). At 

the beginning of the graph pattern, there were no peaks 

or increases in rainfall data. Therefore, significant devi-

ations were observed during the validation process, 

which only compares the data (without any learning 

process). However, these deviations are still tolerable. 

Hence, it can be inferred that an unusual natural phe-

nomenon disrupts the rainfall pattern before and after 

that period. 

Ensemble models' accuracy is based on the premise 

that the connections between multiple variables, such 

as temperature, rainfall, and atmospheric pressure, 

stay steady throughout time. However, if climate 

change accelerates, these linkages might alter in un-

foreseen ways,      decreasing accuracy in ensemble 

models. As a result, when evaluating ensemble model 

findings and making judgments based on their fore-

casts, these circumstances must be taken into account. 

To increase the accuracy of long-term forecasts, other 

modeling techniques that explicitly account for the 

changing interactions between different variables in a 

changing climate may be required. Thus, with its high 

intensity, it is crucial to have a representative depiction 

of the rainfall patterns in Tanjug Beruang, West Kali-

mantan, to predict future rainfall patterns and imple-

ment various forms of mitigation. Table 5 displays the 

expected rainfall values for 2016-2020 using the 8- 6-9-

6-5 Architectural model. 

Table 5 shows the predicted rainfall results using the 

best architecture model, namely 8- 6-9-6-5, which has 

been denormalized to be equivalent to the monthly 

rainfall amounts from January 2016 to December 2020. 

The table depicts that the majority of maximum rainfall, 

which has the potential to cause floods and landslides, 

occurs in the Kapuas Hulu district of West Kalimantan 

Fig. 4. Graph of rainfall pattern all process predictions 2016-2020 (Data target = blue line), (green line = 8-8-10-5/Learn 

model), and (yellow line = 8-6-9-6-5/Predict Model) 

Result of Variable 
Value 

Hidden Layer Neuron Hidden Layer Architectures 

Layer 3 21 8-6-9-6-5 

Epoch and Learning Rate 9999 and 0.3 

MAPE (%) 24.0265514508133 

MSE (%) 0.0121571836440613 
Validate MAPE (%) 32.086221264082 
Validate MSE (%) 0.0336559213805777 

Table 4. Best Parameter of Prediction rainfall with Backpropagation Neural Network (BPNN) 
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from October to February. This is because, based on 

the standard set by Sohn et al.. (2020), floods typically 

occur when the rainfall intensity exceeds 450 mm/

month. Therefore, massive mitigation policies are nec-

essary from October to March to prevent floods and 

landslides,      ensure the safety of daily activities, and 

strengthen security in the border areas of the Republic 

of Indonesia. 

 

Conclusion  

 

The long-term Backpropagation Neural Network 

(BPNN) approach was used to predict rainfall in 

Kapuas Hulu, West Kalimantan Province. Based on the 

approach outcomes, the BPNN technique separated 

the Learning Phase into Training Data from January 

2003 to December 2010, Learning Data from January 

2011 to December 2015, and Validation/Prediction Da-

ta from January 2016 to December 2020. 8-6-9-6-5 

was the best predictive/validation architectural model, 

with a learning rate 0.3 and an epoch of 9,999. The 

prediction accuracy was outstanding, with a Validate 

MSE of 0.0336559213805777 and a Validate MAPE of 

32.086221264082.The highest rainfall was observed in 

December 2019, amounting to 606.6725331 mm. 

Therefore, the BPNN method can be considered one of 

the best alternatives for predicting rainfall in Kapuas 

Hulu, West Kalimantan Province, Indonesia, and can 

be used to mitigate future disasters such as flash floods 

and landslides. It is highly recommended that other 

relevant prediction methods/models/algorithms be used 

to enhance and validate the model's confidence. 
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