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INTRODUCTION 

 

Carbon dioxide concentration (CO2), increasing contin-

uously in the atmosphere since the beginning of indus-

trialization, has been well documented (IPCC 2007) 

and is predicted to increase up to 550ppm by 2050 

(Smith and Mayers et al., 2018). Such an increase in 

CO2 and other greenhouse gases (CH4, NO, CFC, etc.) 

may increase the global air temperature, which has 

already increased by about 0.74oC (IPCC 2007) during 

the last 100 years and is projected to rise by 0.3 to 

4.8oC by the end of the century (IPCC fifth assessment 

report, 2014). This predicted temperature increase may 

decrease agricultural crop yield, particularly rabi/winter 

crops (Ortiz-Bobea et al., 2021).  

The focus on pulses was more because of two points: 

firstly, to fight against malnutrition, as pulses contain 

double the amount of protein compared to cereals, and 

secondly, to increase soil nutrition. Global pulse pro-

duction declined before 2001, but between 2001 and 

2014, pulse production increased (Rawal and Navarro, 

2019). Among pulses, the chickpea is an important dry 

land legume of the tropics and 3rd largest pulse crop 

(16.9% of total world pulse production) after the com-
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mon bean (Phaseolus vulgaris L.) and field pea (Pisum 

sativum L.) in the world. India is leading in chickpea 

production, contributing 75% of world production [Crop-

wise pulses global scenario: 2022, (2024)]. Productivity 

of chickpeas is controlled by abiotic stresses (Jha et al., 

2014). The annual loss of chickpea by abiotic stress is 

6.4million tones (Rawal and Navarro, 2019).  

Several researchers have reported that elevated CO2 in 

the atmosphere can enhance the photosynthetic car-

boxylation efficiency, particularly in C3 plants 

(Lamichaney et al., 2021). This enhanced efficiency can 

increase the number of branches and the number of 

seeds, ultimately increasing plant growth and productiv-

ity (Pal et al., 2008; Bhatia et al.,2021); however, their 

nutrient quality may change (Saha et al., 2015a; Bhatia 

et al., 2021; Lamichaney et al., 2021). Although chick-

pea is rabi season crop but, its productivity is affected 

by elevated temperature. Increasing temperature from 

25oC to >32oC reduces seed yield production in chick-

pea (Devasirvatham et al., 2015; Awasthi et al., 2017). 

Limited studies are available on the seed quality of 

chickpeas under elevated temperatures. It has been 

found that eCO2 reverts the negative effects of elevated

-temperature stress on biomass and yield in legumes 

(Abdelgawad et al., 2015; Palacios et al.,2019).  The 

individual effect of elevated CO2 and high temperature 

is well studied in many crops, including chickpea 

(Vineeth et al., 2015; Rai et al., 2016; Lamichaney et  

al., 2021; Devi et al., 2023), however, the data about 

their interactive effect is meagre (Liu et al., 2017; 

Thomey et al.,2019; Wang et al., 2020; Yuan et al., 

2021) and there appears to be no data available for 

chickpea. Therefore, it is of utmost importance to study 

these two factors individually and  in combination as 

they occur in nature simultaneously and will challenge 

crop production.  Thus, the present study aimed to as-

sess the effect of elevated carbon dioxide (eCO2) and 

elevated temperature (eT) individually and in combina-

tion on chickpea (Cicer arietinum L.) yield and mineral 

nutrient composition.     

 

MATERIALS AND METHODS  

 

Plant material 

Two chickpea (C. arietinum L.) contrasting genotypes, 

i.e. ICC 4958 and Flip 90-166, with differences in phe-

notypes, ICC 4958: desi types and Flip 90-166 Kabuli 

type, were taken to study the effect of eCO2 and eT. 

ICC 4958 is a short-duration crop with high yield and 

low productivity. It is a heat stress-tolerant genotype 

(Krishnamurthy et al., 2011) and medium-maturity culti-

var, whereas Flip 90-166 is a large seeded germplasm 

line from International Center for Agricultural Research 

in the Dry Areas (ICARDA), Aleppo, Syria. Seeds of 

both genotypes were obtained from the Division of Ge-

netics, Indian Agricultural Research Institute (IARI), 

New Delhi. Both types (desi and kabuli) of chickpea 

were selected for the study as their response against 

different climatic variables vary ( Purushothaman et al., 

2014) and the same seeds were used in both the years 

of study period.  

 

Experimental setup 

The pot experiments were conducted in Open top 

chamber (OTC) facility at Indian Agricultural Research 

Institute (IARI), New Delhi ( 28°35′N latitude,77°12′E 

longitude) during rabi (November- March) season of 

two successive years, i.e. 2019-2020 (year 1) and 2020

-21 (year 2) with two chickpea (Cicer arietinum L.) gen-

otypes (ICC 4958 and Flip 90-166).  

Six OTCs were used to perform the said experiments. 

Out of six OTCs, two OTCs were used for elevated CO2 

exposure (eCO2), another two OTCs for elevated tem-

perature (eT), and the remaining two were used for 

imposing combined eCO2eT and control (C) pot were 

kept outside OTC in natural ambient conditions. The 

OTC facility was used for treatments described earlier 

(Chaturvedi et al., 2017).  

Seeds of both genotypes were sown simultaneously in 

plastic pots of white color (14 cm diameter and 12" cm 

height). In year 1 (2019-20), the effect of eCO2  and eT 

stress individually and their combined impact was per-

formed on yield parameters. Later in year 2 (2020-21), 

the same experiment was performed  and other param-

eters viz., photosynthesis; and seed protein and miner-

al nutrients (Na , K ,Ca, Fe, P and Zn ) were analyzed 

together with yield parameters, i.e. total biomass, pod 

number, seed weight, number of branches, pod fertility 

and 100 seed weight per plant.  

In both years, each pot was filled with clay loamy soil 

(18 kg) supplemented with farmyard manure (in 3:1). 

The N: P: K was applied in the form of urea (20Kg/ha), 

single superphosphate (40 Kg/ha) and muriate of pot-

ash (60Kg/ha), respectively at the time of soil prepara-

tion (before sowing). The contrasting chickpea seeds 

were surface sterilized by washing with HgCl2 (0.1%) 

for 2 min. After surface sterilization, seeds were rinsed 

with distilled water and soaked in distilled water for 6 

hours. After that, seeds were dipped in 10% sugar solu-

tion and coated with Rhizobium culture in the shade. In 

each pot, six seeds were sown manually at 10cm 

depth. Both the varieties were sown simultaneously in 

different pots (10 pots of each genotype and each treat-

ment). Six seeds of each genotype per pot were sown 

and 20 days after germination, thinning was performed 

in each pot and only three plants were kept in each pot. 

Weeding was performed manually throughout the 

growth period. The experimental design consisted of 3 

treatments (eCO2, eT, eCO2eT) with control (C) to 

study the individual effects of elevated CO2 (eCO2) and 

elevated temperature (eT) together with their combined 

effect on chickpea genotypes. Germination date, flow-
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ering (in days) and pod emergence (in days) were rec-

orded manually. 

 

Elevated carbon dioxide ( eCO2) and elevated- 

temperature (eT) exposure in OTCs  

Elevated carbon dioxide treatment was given after 20 

days of seed sowing and eT treatment was started at 

the flower initiation stage and continued till maturity (65 

days). The target for elevated eCO2 level (~ 250ppm 

above ambient) in OTC and eT  (4-5oC above the ambi-

ent temperature) was achieved in the same way as 

described earlier (Chaturvedi  et al., 2017). The diame-

ter of each OTC was 3.0m and the height was 2.5m, 

with the open upper end having a frustum of 0.5m. The 

uniform temperature and humidity were maintained by 

the upper end. The OTC was prepared by polyvinyl 

chloride (PVC) sheets with thickness of 125µm and 

>85% of transmittance. Elevated level of CO2 was sup-

plied by commercial grade CO2 cylinders with solenoid 

valves (DURA, ESAB, India). The eCO2 level was con-

trolled by a regulator and the CO2 was supplied during 

day time between 08:00-18:00. CO2 (99.7%, v/v CO2 

and less than 10 µmol/mol CO) procured from M/S Gas 

Associates, New Delhi. Throughout the entire experi-

mental period, temperature (oC) and relative humidity 

(%) in all the OTCs were recorded every 30 min with 

the help of temperature and humidity sensors 

(MINCER, NIAES, Tsukuba, Japan).  The eCO2 com-

bined with eT (eCO2eT) treatment was imposed using 

the individual treatment methodology of both treat-

ments simultaneously in the OTC.   

 

Treatment conditions 

Under ambient conditions, where control pots were 

kept, the average maximum (max) day (0700 to1900 

hrs) temperature was 21.4 ±5.0 oC in year 1, while it 

was 24.5 ±5.9 oC in year 2 (Fig 1A &B). Similarly, the 

average minimum (min) night temperature (1900 to 

0700 hrs) was 8.9 ±4.1 oC and 9.0±4.8 oC in years 1 

and 2, respectively (Fig. 1 C&D). In contrast to this, 

under eT treatment, the average maximum temperature 

was 24.0±4.2 oC in year 1 and 27.3±7.4oC in year 2, 

Under this treatment condition, the average minimum 

temperature was 10.1±4.7 oC and 10.6±5.5 oC in year 1 

and year 2, respectively. The level of eCO2 in two con-

secutive experimental years were 688.9 ±16.1 µl/l (in 

year 1; ambient was 392.6±10.7 µl/l) and 662.7±21.8 

µl/l) (in year 2; ambient was 388.1±10.0 µl/l). Meteoro-

logical observations of both years during the treatments 

and control are presented in Fig.1. 

 

Determination of yield and yield attributes  

On maturity after 128 days, the plants were randomly 

selected in five replicates for yield components analy-

sis. Their seed yield, pod fertility, pod weight, total bio-

mass, number of branches, and 100 seed weight were 

recorded as described by Saha et al. (2015b).  

 

Measurement of  gaseous exchange  

In year 2, net photosynthesis (μmol CO2m
-2 s-1), sto-

matal conductance (mol m-2 s-1) and transpiration rate 

(mmol m-2 s-1) were measured after 7 days of flowering 

in randomly selected fully expanded third leaf using LI-

6400XT (Li-Cor, Inc., Lincoln, NE, USA) in between 

10:00-12:00 hrs. The CO2 concentration was kept at 

400 μmol CO2 mol-1 with a constant flow rate of 

500µmol s-1 and photosynthesis photon flux density 

(PPFA) of 1000 µmol m-2s-1 (by a red-blue LED light 

source) (Vineeth et al.,2015). 

 

Determination of protein and seed mineral nutri-

ents under different treatments  

Protein (%)  

Total protein content in chickpea seeds was deter-

mined indirectly by estimating nitrogen content follow-

ing Semi-micro-Kjeldahl method, and Kjeldahl conver-

sion coefficient of 6.25 was used for the analysis 

(Juliano, 1993). 

 

Mineral nutrients  

Both macro (Na, K, P, Mg and Ca) and micronutrients 

(Zn and Fe) were estimated according to Bhargava and 

Raghupathi (1993). Seeds from different treatments 

were ground homogenized into flours and dried at 80°C 

for 24 hrs. Finely ground dried seed samples (0.5g) 

were digested in 10 ml digestion mixture (HNO3 and 

HClO4, 9:4). The digested solution was cooled and 

washed in a 50 ml volumetric flask. The solution was 

again filtered and analyzed for all the macro and 

micronutrients using Atomic absorption 

spectrophotometer (AAS 4141, Electronics Corporation 

of India Limited, Hyderabad).  

 

Statistical analysis 

Data obtained in the experiments were analyzed using 

SPSS v.16 for Windows (SPSS Inc., Chicago, USA). 

The data was statistically verified with analysis of varia-

tion (ANOVA) and the significance of difference using 

Tukey and the significance of difference was measured 

using Tukey's post-hoc test at 5%. 

 

RESULTS AND DISCUSSION 

 

Pulses are important crops, firstly to fight against mal-

nutrition and secondly to increase soil fertility.  Chick-

pea is the most important pulse crop in India. However, 

its productivity and quality are altered by present cli-

matic changes. Although the yield of chickpea is en-

hanced by eCO2 . The research on eCO2 and eT indi-

vidually reveals the quality deterioration affecting hu-

man nutrition (Lamichaney et al., 2021; Devi et al., 

2023).  The study on combined effect of  eCO2 eT in 
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crops is limited (Thomey et al., 2019;Wang et al.,2020; 

Yuan et al., 2021), and there appears to be no data on 

Chickpea. 

 

Yield of chickpea 

 In the present study, eCO2 alone increased total dry 

biomass, number of branches/ plant, number of seeds/ 

plant and seed weight in both genotypes (Table 1). The 

number of branches increased significantly (P<0.001) 

from 4.6-4.4 to 6.2-5.8 in ICC 4958 and from 3.4-3.8 to 

4.2-4.8 in Flip 90-166. The number of seeds/ plant en-

hancement was 37.4-35.7% in ICC 4958 and 29.1-

28.8% in Flip 90-166. Seed weight /plant under eCO2 

was significantly higher (P<0.001) in both genotypes, 

ICC4958 and Flip 90-166 (15.3-17.5% and 8.8-11.1%, 

respectively, in both years, i.e., 2019-20 and 2020-21) 

as compared to seed yield in ambient condition 

(control). The present results are concurrence with ear-

lier findings made in chickpeas under eCO2 (Singh et 

al., 2013; Saha et al., 2015b; Rai et al., 2016; 

Lamichaney et al., 2021; Singh et al., 2021). The seed 

size was also increased in the present study, similar to 

Lamichaney et al., (2021), but on the contrary, Saha et 

al. (2015b) reported no effect on seed size. It is report-

ed that the enhanced yield of crops under eCO2 indi-

cates that more biomass accumulation under eCO2 

favouring plants that become taller and fruit more. Bio-

mass accumulation also helps to store more carbon in 

seed and enhance seed number and size (Lamichaney 

et al., 2021; Singh et al., 2021). 

Under eT,  all yield parameters (total dry biomass, num-

ber of branches/ plant, number of seeds/ plant, pod 

fertility and seed weight) decreased significantly 

(P<0.001) except dry biomass. The number of branch-

es was reduced from 4.6-4.4 branches/plant to 4.0-3.8 

branches/ plant in ICC 4958 and from 3.8-3.4 to 2.6-2.4 

branches/ plant in Flip 90-166 in 2019-20 and 2020-21 

respectively. Reduction in the number of branches re-

sulted in reduced pod number (P<0.001) and seed 

yield. The highest decrease in seed yield was observed 

in Flip 90-166 (22.0-26.9%) compared to ICC4958 

(~12.0 %) in 2019-20 and 2020-21 respectively. An 

increase in dry biomass has been reported in chickpea 

due to increased photosynthesis rate and enhancement 

in rubisco activity under a mild increase in temperature 

(Devi et al., 2023). However, as the temperature in-

creased above 32oC at the flowering stage, it reduced 

seed yield in chickpea (Gaur et al., 2019). Decrease in 

dry matter allocation towards the seed can also be an-

other reason for the decrease in yield (Rai et al., 2016). 

Elevated temperatures badly affect pollen germination, 

pollen tube growth, and stigma receptivity, resulting in a 

low yield of chickpeas (Devasirvatham, 2012). Reduc-

tion in pollen viability and pollen number is a key factor 

for legume yield under eT (Prasad et al., 2002). The 

seed size was also reduced in the present study, evi-

dent by a 6.3-11.1% decrease in 100 seed weight. It is 

reported that elevated temperature subsequently reduc-

es the activities of several proteins/enzymes related to 

the conversion of sugar to starch (Wardlaw and Mon-

Fig. 1. Daily air temperature for control [Tmax (A&B) and Tmin (C&D)],  elevated temperature (eT ), and their   

interaction ( eCO2eT) recorded inside Open top chamber  in 2019-20 and 2020-21 
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cur, 1995; Dong and Beckles, 2019).  Further reduction 

in seed size under eT might be due to reduced crop 

duration that affects the seed size in pulses 

(Chakrabarti et al., 2013 in chickpea; Jumrani and 

Bhatia, 2014 in chickpea; Baidya et al., 2021 in lentil).  

Under combined conditions (eCO2eT treatment), the 

present study showed that crop yield reduction was 

improved in both genotypes, Flip 90-166 and IC4958, 

compared to eT. The amelioration was more in ICC 

4958 compared to Flip 90-166. However, total biomass 

did not show a similar trend to seed yield and was high-

er in both genotypes than in the control and eCO2 (15.1

-21.6% in Flip 90-166 and 26.3-38.2% in ICC 4958) 

(Table 1). Similar to yield other yield parameters were 

also improved. The present results of eCO2eT conform 

to Palacios et al. (2019) and Thomey (2019), who 

worked for soybeans. However, Prasad et al. (2002) in 

kidney beans and Delahunty et al. (2018) in lentil did 

not observe any interaction between  eCO2 eT  on seed 

yield and its components. It may be that eT might be a 

problem in reducing the yield of chickpea in both 

genoyptyes, which may be due to  pollen germination 

and pod abortion as reported by Baidya et al. (2021) in 

the case of lentil.  

 

Gas exchange 

Net photosynthesis (pn) was high under eCO2, while 

stomatal conductance (gS), and transpiration (E) were 

low (Figure 2). eCO2 conditions increased (P<0.001) 

the rate of photosynthesis by 36.4% in ICC4958 and 

21.7% in Flip 90-166 in 2020-21 compared to ambient 

control conditions. The rate of photosynthesis was in-

creased due to the enhancement effect on ribulose 

bisphosphate carboxylase-oxygenase  (Rubisco) activi-

ty. The present concentration of CO2 may not be suffi-

cient to completely saturate the Rubisco enzyme as 

reported in C3 crop (Ainsworth and Rogers 2007). So, 

when the condition of eCO2  was given, pn was en-

hanced. The enhanced photosynthesis results in more 

biomass accumulation in plants. The present study also 

exhibited an increase in biomass accumulation. The  

results of biomass accumulation were consistent with 

the study of  Mishra and Agrawal (2014) in mungbean, 

Jumrani et al., (2017) in soybean and Soba et al. 

(2020) in soybean. In the present study, the reduction 

in stomatal conductance was 13.7% in ICC4958 and 

17.8% in Flip 90-166 and the transpiration rate de-

creased (P<0.001) by 21.5% in ICC4958 and 28.1% in 

Flip 90-166 as compared to control. The concentration 

of CO2 was higher inside the stomata, which kept pn at 

the higher side to maintain the constant ratio of internal 

CO2 to external CO2 level, reducing stomatal conduct-

ance. Soba et al. (2020) also reported a reduction in 

stomatal conductance in soybeans and Mishra and 

Agrawal (2014) in mungbean under eCO2 conditions. 

Reduction in stomatal conductance ultimately reduces 

transpiration and conserve water. Water conservation 

aids plants in growing in more favourable conditions 

(Mishra and Agrawal, 2014).   

Like eCO2, eT also increased photosynthesis 

(P<0.001). The maximum induction was observed in 

ICC 4958 (9.5%) compared to Flip90-166 (8.4%).  In-

crease in PN was due to Rubisco enhancement under a 

mild increase in temperature. Similar to eCO2, stomatal 

conductance was also decreased under eT. The maxi-

mum reduction in stomatal conductance observed was 

Flip 90-166 (30.4%) compared to ICC4958 (27.7%). 

Under eT, for cooling the plants, the transpiration rate 

was not affected in ICC 4958; however, 17.3% reduc-

tion was observed in Flip90-166.The present results 

were similar to those of  Jumrani and Bhatia (2014) and 

Kumar et al. (2020) in study on chickpea and Suarez et 

al. (2021) in common beans. The result showed that 

ICC 4958 had more effective machinery to maintain the 

rate of photosynthesis under eT compared to Flip90-

166. It is reported that elevation in temperature signifi-

cantly increases photosynthesis and reduces transpira-

tion; this effect, in turn, increases biomass accumula-

tion in rice (Wang et al., 2020). 

Under the combination of eCO2eT, photosynthesis was 

not affected significantly (P<0.05); however, stomatal 

conductance and transpiration reduction occurred (Fig. 

2 B&C). eCO2eT caused the maximum reduction in 

transpiration (19.4% in ICC 4958 and 23.7% in Flip 90-

166) in both genotypes.  The reduction in transpiration 

was less in ICC 4958, showing that this genotype has 

effective cooling machinery compared to Flip 90-166. 

The plants close their stomata to reduce transpiration 

and ultimately to save water.  However, the eCO2eT 

condition fixed carbon at a rate similar to the control but 

lower than the eCO2 condition. In combined condition 

eCO2eT reduced transpiration and maintained photo-

synthesis at the normal rate as reported by Yuan et al. 

(2021) in rice and Vanaja et al. (2024) in maize. The 

interactive effect of eCO2eT is beneficial for photosyn-

thesis, but an increase in photosynthesis is not the re-

sult in terms of yield in rice, as reported by Wang et al. 

(2020). 

 

Seed protein and mineral nutrients  

Protein and nutrient contents (Na, K, Ca, Fe, P and Zn) 

of seed were decreased significantly (P<0.01) under all 

three treatments. Reduction in seed protein was rec-

orded to be 5.3-11.0% under eCO2 compared to control 

(Table 2). The reduction in protein was also observed 

by  Mishra and Agrawal (2014) in mungbean (9.3-

15.5%), Saha et al. (2015a) in chickpea (9-10%) and by 

Li et al., (2018) in soybean (2.4-6.1% ).Under eCO2, the 

decrease in net protein content might be due to an in-

crease in the carbon concentration that causes protein 

dilution. Inhibition in nitrate assimilation could be anoth-

er reason for the reduction in seed protein content in 
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leguminous crops, as reported earlier  (Hao et al.,2014; 

Myers et al., 2014; Saha et al., 2015a; Jin et al., 2019; 

Soba et al., 2020). All analyzed macro and micronutri-

ents were decreased under eCO2, except phosphorus, 

but the reduction was more noticeable in kabuli type 

genotype Flip 90-166 as compared to ICC4958. Over-

all, the reduction in macronutrients across the geno-

types was 6.0-25.4%, whereas in the case of micronu-

trients (Fe and Zn), the reduction ranged from 6.0-

12.9% compared to ambient conditions. Like protein 

dilution, other nutrients were diluted by more carbon 

fixation in grains. However, the mineral dilution was not 

in the same ratio in both genotypes. The P was not 

affected by eCO2, as Saha et al. (2015a) reported in 

chickpea whereas Na, K and Ca were the worst affect-

ed minerals in both genotypes. An increase in photo-

synthesis under eCO2 is linked to Rubisco enzyme con-

centration. This will require more P for synthesis in en-

zyme; thus, the P assimilation rate will increase and will 

not affect the P content in seeds (Jin et al., 2015; Zhu 

et al., 2019).  

Under eT, the concentration of all analyzed seed nutri-

ents decreased. Elevated temperature exposure also 

reduced 6.7-9.3% seed protein in both genotypes. The 

results are in agreement with Mourtzinis et al. (2017); 

Nakagawa et al. (2020) in soybean; a 4.5-6.7% de-

crease in protein content was reported by Sehgal et al. 

(2019) in lentil  and 17-57 % Devi et al. (2023) in chick-

pea. The reduction in protein content was due to inter-

ruptions in biosynthesis and the import of precursors in 

leaves (Devi et al., 2023) or nitrogen assimilation in 

roots (Nakagawa et al., 2020). Among analysed nutri-

ents, Na and P in ICC 4958 and Na and Zn were the 

most affected in Flip 90-166 under eT. The reduction in 

seed nutrient concentration may be due to reduction in 

seed filling duration, which is the most critical stage for 

grain nutrient concentration and it is related to various 

factors such as disruption in the mobilization of photo-

synthates, resulting in small and wrinkled seeds (Egli et 

al.,2005; Farooq et al., 2017; Devi et al., 2023). A high-

er transpiration rate might be another reason for the 

reduction, required to cool down the leaf temperature 

and convert most of the sugar into energy to accelerate 

the process of transpiration (Lin et al., 2017).  

Under the interactive effect of eCO2eT in chickpea, 

seed mineral nutrients were more deteriorated in both 

genotypes except P than in their individual effect, i.e., 

eCO2 and eT. The P content was not affected under the 

eCO2 eT in both genotypes. However, an increase in P 

uptake was observed by Guo et al. (2022) in soybean 

and rice. Similar results of reduction in protein are also 

observed by Chaturvedi et al. (2017) (4-6 %) and  Liu 

et al. (2017) in rice (~7%).  In the present study, the 

maximum reduction in macronutrients viz. K, Na, Ca 

and Mg were recorded in Flip 90-166.  In the case of 

micronutrients viz. Fe and Zn (20.3% and 18.9%, re- G
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spectively) were highly reduced in Flip 90-166 under 

eCO2eT compared to control conditions. An aggregated 

reduction in all nutrients was observed compared to 

control in both genotypes. The reduction in protein  

content was in the range of 10.4-16.4% in both the  

genotypes. 

The present study indicated that in Chickpea, a C3 

crop, the present concentration of CO2 was not opti-

mum for crop growth. An increased concentration of 

CO2 favoured a higher rate of photosynthesis, resulting 

in higher growth, i.e. total biomass, including plant 

height and branches of the plant increased. Increased 

biomass furnished more space for flowers and pods on 

plants and better yields. Despite the positive effect on 

growth under eCO2, seeds became more carbonaceous 

and mineral nutrients were diluted. Chickpea grows 

more favourably under ~ 28oC and at the vegetative 

stage in Delhi condition, the temperature was very low 

(2-15oC) compared to optimum grown temperature.  eT 

showed a positive effect on growth, but when the onset 

of flowers came, the temperature was higher than the 

optimum temperature (~35oC), which affected pollen 

germination and pod development, resulting in yield 

reduction. The grain filling stage became shorter to 

avoid plants' high temperature and reduction in mineral 

adsorption duration, resulting in the seed's low protein 

and mineral nutrient content. Under the interactive ef-

fect eCO2eT, the growth of chickpea was better than 

control; however, showing an additive effect of reduc-

tion of mineral nutrient.  

 

Conclusion 

 

The present study focused on the individual effect of 

eCO2 and eT and their interactive effect on two chick-

pea genotypes, i.e., ICC 4958 and Flip 90-166. The 

results showed that the yield of chickpea increased in 

both genotypes by increasing the number of branches 

and seeds of the plant under eCO2. eT (~4.0 oC) 

showed a positive effect on plant growth, suggesting 

that chickpea growth was not affected by a bit of rise in 

temperature in the studied climatic conditions. Howev-

er, under eT, might have reduced pollen germination 

resulted in pod abortion and consequently, a reduction 

in the yield. The eCO2 eT interaction significantly affect-

ed yield and seed quality parameters. The rate of pho-

tosynthesis showed a synergistic effect, so the plants' 

biomass increased but did not turn into yield. However, 

the yield was reduced compared to control but im-

proved as compared to eT. The inference from this re-

sult was that eCO2 (650±50µl/l) ameliorated the nega-

tive effect of high temperature ~4OC on yield. However, 

an augmenting effect was observed under the interac-

tive effect of eCO2eT for their protein and seed nutrient 

content except P. The reduction in seeds’ protein and 

other mineral nutrients such as Ca, Fe, Zn, K and Na in 

both genotypes suggested that all these factors viz. 

eCO2, eT and eCO2eT were unfavourable for their nu-

trient levels. The uneven decrease in both genotypes 

showed that desi and kabuli genotypes may vary 

against different abiotic stress. The study provides use-

ful information on agricultural planning and manage-

ment to enhance yield because of climate challenges. 

A systematic investigation is suggested to study the 

yield and the mineral nutrients with more genotypes 

and different climatic conditions.  
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